aocpp/2022/16.cpp

338 lines
10 KiB
C++
Raw Permalink Normal View History

2023-01-29 16:47:44 -08:00
/// @file 16.cpp
/// @brief Solution to Advent of Code 2022 Day 16
///
/// This solution follows the following process:
/// 1. Parse the input source into a list of rooms
2023-01-30 12:25:39 -08:00
/// 2. Optimization: put rooms with valves first in the array
/// 3. Compute the shortest paths between each room
/// 4. Enumerate all the paths through the graph to find maximum water flow per valve-set.
/// 5. Use the flow/valve summaries to compute the two answers.
2023-01-29 16:47:44 -08:00
2023-01-29 12:16:47 -08:00
#include <bitset>
2023-01-28 08:39:08 -08:00
#include <cstdint>
#include <iostream>
#include <sstream>
2023-04-07 09:45:55 -07:00
#include <stack>
2023-01-28 08:39:08 -08:00
#include <stdexcept>
#include <string>
#include <tuple>
2023-01-28 14:46:00 -08:00
#include <unordered_map>
2023-01-29 12:16:47 -08:00
#include <vector>
2023-01-28 08:39:08 -08:00
2023-01-29 12:16:47 -08:00
#include <boost/multi_array.hpp>
2023-01-28 14:46:00 -08:00
#include <boost/phoenix.hpp>
2023-01-29 12:16:47 -08:00
#include <boost/range/adaptors.hpp>
2023-01-28 14:46:00 -08:00
#include <boost/range/algorithm.hpp>
2023-01-29 12:16:47 -08:00
#include <boost/range/irange.hpp>
#include <boost/spirit/include/qi.hpp>
2023-01-28 08:39:08 -08:00
#include <doctest.h>
2023-04-08 12:08:51 -07:00
#include <aocpp/Parsing.hpp>
2023-01-28 08:39:08 -08:00
#include <aocpp/Startup.hpp>
namespace {
2023-01-30 21:07:23 -08:00
namespace phx = boost::phoenix;
namespace qi = boost::spirit::qi;
2023-02-01 11:23:04 -08:00
/// @brief The starting room as defined in the problem statement
constexpr char const* STARTING_ROOM = "AA";
/// @brief Arbitrary number of valves this solution supports
constexpr std::size_t MAX_VALVES = 64;
2023-01-29 16:47:44 -08:00
/// @brief Array of distances from one node to another.
/// @tparam T distance type
///
/// `distance[i][j]` is the cost to move from node `i` to node `j`
template <typename T>
using distance_array = boost::multi_array<T, 2>;
2023-01-29 12:16:47 -08:00
2023-01-30 12:25:39 -08:00
/// @brief Update single-step distance matrix with transitive shortest paths
2023-01-29 16:47:44 -08:00
/// @tparam T distance type
2023-01-30 12:25:39 -08:00
/// @param[in,out] dist distance matrix
///
/// This implementation uses the FloydWarshall algorithm and assumes that
/// there are no negative-cost cycles. It also assumes that a path exists
/// between all pairs of nodes.
2023-01-29 16:47:44 -08:00
template <typename T>
auto ShortestDistances(distance_array<T> & dist) -> void
2023-01-28 08:39:08 -08:00
{
auto const range = boost::irange(dist.size());
for (auto const k : range) {
for (auto const i : range) {
for (auto const j : range) {
2023-02-01 11:23:04 -08:00
auto const d_ikj = dist[i][k] + dist[k][j];
auto & d_ij = dist[i][j];
2023-02-02 07:57:37 -08:00
if (d_ij > d_ikj) d_ij = d_ikj;
2023-01-28 08:39:08 -08:00
}
}
}
}
2023-01-29 16:47:44 -08:00
/// @brief A single record from the problem input.
2023-01-29 12:16:47 -08:00
struct Room {
/// @brief Name of the room
2023-01-28 08:39:08 -08:00
std::string name;
2023-01-29 12:16:47 -08:00
/// @brief Flow rate of the valve in the room
2023-01-28 08:39:08 -08:00
std::uint64_t flow;
2023-01-29 12:16:47 -08:00
/// @brief Directly adjacent rooms
2023-01-28 08:39:08 -08:00
std::vector<std::string> connections;
};
2023-04-08 12:08:51 -07:00
class Grammar : public qi::grammar<std::string::const_iterator, std::vector<Room>()> {
qi::rule<iterator_type, std::string()> name;
qi::rule<iterator_type, Room()> room_description;
qi::rule<iterator_type, std::vector<Room>()> room_descriptions;
2023-01-28 14:46:00 -08:00
2023-04-08 12:08:51 -07:00
public:
Grammar() : grammar::base_type{room_descriptions} {
using namespace qi::labels;
name = qi::as_string[+qi::alpha];
room_description =
2023-01-28 08:39:08 -08:00
"Valve " >>
2023-01-29 12:16:47 -08:00
name [ phx::bind(&Room::name, _val) = _1 ] >>
2023-01-28 08:39:08 -08:00
" has flow rate=" >>
2023-01-29 12:16:47 -08:00
qi::ulong_long [ phx::bind(&Room::flow, _val) = _1 ] >>
2023-01-28 08:39:08 -08:00
"; tunnel" >> -qi::string("s") >>
" lead" >> -qi::string("s") >>
" to valve" >> -qi::string("s") >>
" " >>
2023-04-08 12:08:51 -07:00
(name % ", ") [ phx::bind(&Room::connections, _val) = _1 ] >>
"\n";
room_descriptions = *room_description;
2023-01-28 08:39:08 -08:00
}
2023-04-08 12:08:51 -07:00
};
2023-01-28 08:39:08 -08:00
2023-01-30 12:25:39 -08:00
/// @brief Rearrange the rooms so that those with flows come first
/// @param[in,out] rooms vector of rooms that gets reordered
/// @return number of rooms with with non-zero flows
auto FlowsFirst(
std::vector<Room> & rooms
) -> std::size_t
{
2023-01-30 21:07:23 -08:00
using namespace phx::placeholders;
auto const zeros = boost::range::partition(rooms, phx::bind(&Room::flow, arg1) > 0);
return std::distance(boost::begin(rooms), zeros);
2023-01-30 12:25:39 -08:00
}
2023-01-29 12:16:47 -08:00
/// @brief Computes the distances between rooms and finds the address of the starting room
2023-01-30 12:25:39 -08:00
/// @param[in] rooms input list of rooms
2023-01-29 12:16:47 -08:00
/// @returns starting index and distances
auto GenerateDistances(
std::vector<Room> const& rooms
2023-01-29 16:47:44 -08:00
) -> std::pair<std::size_t, distance_array<std::uint64_t>>
2023-01-28 08:39:08 -08:00
{
2023-04-07 09:45:55 -07:00
auto const N = rooms.size();
2023-01-28 08:39:08 -08:00
2023-01-29 12:16:47 -08:00
// Associate the names and indexes of each room
std::unordered_map<std::string, std::size_t> names;
2023-04-07 09:45:55 -07:00
for (auto const [i,room] : boost::adaptors::index(rooms)) {
2023-01-29 12:16:47 -08:00
names[room.name] = i;
2023-01-28 08:39:08 -08:00
}
2023-04-07 09:45:55 -07:00
auto distances = distance_array<std::uint64_t>{boost::extents[N][N]};
2023-01-29 12:16:47 -08:00
2023-01-30 21:07:23 -08:00
for (auto const i : boost::irange(rooms.size())) {
2023-01-29 12:16:47 -08:00
auto di = distances[i];
2023-02-01 11:23:04 -08:00
// Default value: N is longer than any optimal distance by at least 1
boost::range::fill(di, N);
2023-01-29 12:16:47 -08:00
// each room is one away from adjacent rooms
2023-02-01 11:23:04 -08:00
for (auto const& name : rooms[i].connections) {
2023-01-29 12:16:47 -08:00
di[names[name]] = 1;
2023-01-28 08:39:08 -08:00
}
2023-01-29 12:16:47 -08:00
// zero distance to self
di[i] = 0;
2023-01-28 08:39:08 -08:00
}
ShortestDistances(distances);
2023-02-01 11:23:04 -08:00
return {names.at(STARTING_ROOM), std::move(distances)};
2023-01-28 08:39:08 -08:00
}
2023-01-29 16:47:44 -08:00
/// @brief Bitset used to track which valves have been turned on
2023-02-01 11:23:04 -08:00
using Valves = std::bitset<MAX_VALVES>;
2023-01-28 08:39:08 -08:00
2023-01-29 16:47:44 -08:00
/// @brief Intermediate states for depth-first search in Routes
2023-01-28 08:39:08 -08:00
struct State {
2023-01-29 16:47:44 -08:00
/// @brief Time remaining
2023-01-28 08:39:08 -08:00
std::uint64_t time;
2023-01-29 16:47:44 -08:00
/// @brief Water flow achieved so far
2023-01-28 08:39:08 -08:00
std::uint64_t flow;
2023-01-29 16:47:44 -08:00
/// @brief Current actor location
2023-01-28 08:39:08 -08:00
std::size_t location;
2023-01-29 16:47:44 -08:00
/// @brief Set of valves already opened
2023-01-28 08:39:08 -08:00
Valves valves;
};
2023-01-29 12:16:47 -08:00
/// @brief Compute all the flows achievable with a set of values
2023-01-30 12:25:39 -08:00
/// @param[in] start Index of starting room
/// @param[in] initial_time Initial amount of time
/// @param[in] rooms Array of rooms from input file
/// @param[in] distances Shortest paths between all pairs of rooms
2023-01-29 12:16:47 -08:00
/// @return Mapping of maximum flow achievable using a particular set of valves
2023-01-28 14:46:00 -08:00
auto Routes(
std::size_t const start,
2023-01-29 12:16:47 -08:00
std::uint64_t const initial_time,
std::vector<Room> const& rooms,
2023-01-29 16:47:44 -08:00
distance_array<std::uint64_t> const& distances
2023-01-28 14:46:00 -08:00
) -> std::unordered_map<Valves, std::uint64_t>
2023-01-28 08:39:08 -08:00
{
2023-02-01 11:23:04 -08:00
if (rooms.size() > MAX_VALVES) {
throw std::runtime_error{"Too many valves"};
}
2023-01-29 16:47:44 -08:00
// Maximal flow seen at each set of open valves
2023-04-07 09:45:55 -07:00
auto result = std::unordered_map<Valves, std::uint64_t>{};
2023-01-29 12:16:47 -08:00
2023-01-29 16:47:44 -08:00
// Remaining states for depth first search
2023-04-07 09:45:55 -07:00
auto states = std::stack<State>{};
states.push({initial_time, 0, start, {}});
2023-01-28 08:39:08 -08:00
while (!states.empty()) {
2023-04-07 09:45:55 -07:00
auto const state = states.top();
states.pop();
2023-01-28 08:39:08 -08:00
2023-01-29 16:47:44 -08:00
if (auto & best = result[state.valves]; best < state.flow) {
best = state.flow;
}
auto const distances_i = distances[state.location];
2023-04-07 09:45:55 -07:00
for (auto const [j, room] : boost::adaptors::index(rooms)) {
2023-01-28 14:46:00 -08:00
// don't revisit a valve
2023-01-29 12:16:47 -08:00
if (state.valves.test(j)) { continue; }
2023-01-28 14:46:00 -08:00
// don't visit rooms we can't get to in time
2023-01-29 16:47:44 -08:00
// +1 accounts for the cost of actually turning the valve
auto const cost = distances_i[j] + 1;
if (cost >= state.time) { continue; }
2023-01-28 14:46:00 -08:00
2023-01-29 16:47:44 -08:00
auto const time = state.time - cost;
2023-01-30 21:07:23 -08:00
auto const flow = state.flow + room.flow * time;
2023-01-28 14:46:00 -08:00
auto valves = state.valves;
2023-01-29 12:16:47 -08:00
valves.set(j);
2023-01-28 14:46:00 -08:00
2023-04-07 09:45:55 -07:00
states.push({time, flow, static_cast<std::size_t>(j), valves});
2023-01-28 14:46:00 -08:00
}
}
return result;
}
2023-01-29 12:16:47 -08:00
/// @brief Maximize the water flow using a single actor and 30 minutes
2023-01-30 12:25:39 -08:00
/// @param[in] start Index of the starting room
/// @param[in] rooms Rooms from input file
/// @param[in] distances Shortest distances between pairs of rooms
2023-01-29 12:16:47 -08:00
/// @return Maximum flow achievable
auto Part1(
std::size_t const start,
std::vector<Room> const& rooms,
2023-01-29 16:47:44 -08:00
distance_array<std::uint64_t> const& distances
2023-01-29 12:16:47 -08:00
) -> std::uint64_t
2023-01-28 14:46:00 -08:00
{
2023-01-30 21:07:23 -08:00
auto const routes = Routes(start, 30, rooms, distances);
2023-01-28 14:46:00 -08:00
return *boost::range::max_element(routes | boost::adaptors::map_values);
}
2023-01-30 21:07:23 -08:00
/// @brief Maximize the water flow using two actors and 26 minutes
2023-01-30 12:25:39 -08:00
/// @param[in] start Index of the starting room
/// @param[in] rooms Rooms from input file
/// @param[in] distances Shortest distances between pairs of rooms
2023-01-29 12:16:47 -08:00
/// @return Maximum flow achievable
auto Part2(
std::size_t const start,
std::vector<Room> const& rooms,
2023-01-29 16:47:44 -08:00
distance_array<std::uint64_t> const& distances
2023-01-29 12:16:47 -08:00
) -> std::uint64_t
2023-01-28 14:46:00 -08:00
{
2023-01-30 21:07:23 -08:00
auto const routes = Routes(start, 26, rooms, distances);
2023-01-28 14:46:00 -08:00
auto const end = routes.end();
2023-02-01 11:23:04 -08:00
2023-04-07 09:45:55 -07:00
auto best = std::uint64_t{0};
2023-01-30 21:07:23 -08:00
for (auto it1 = routes.begin(); it1 != end; ++it1) {
for (auto it2 = std::next(it1); it2 != end; ++it2) {
2023-01-28 14:46:00 -08:00
// only consider pairs that have disjoint sets of valves
if ((it1->first & it2->first).none()) {
2023-01-29 16:47:44 -08:00
best = std::max(best, it1->second + it2->second);
2023-01-28 14:46:00 -08:00
}
2023-01-28 08:39:08 -08:00
}
}
2023-01-29 16:47:44 -08:00
return best;
2023-01-28 08:39:08 -08:00
}
} // namespace
2023-02-01 11:23:04 -08:00
/// @brief Print solutions to parts 1 and 2
2023-01-31 21:29:04 -08:00
/// @param[in,out] in input text
/// @param[in,out] out output text
auto Main(std::istream & in, std::ostream & out) -> void
{
2023-04-08 12:08:51 -07:00
auto rooms = aocpp::ParseGrammar(Grammar{}, in);
2023-04-07 09:45:55 -07:00
auto const n = FlowsFirst(rooms); // reorders rooms
2023-01-31 21:29:04 -08:00
auto const [start, distances] = GenerateDistances(rooms);
rooms.resize(n); // forget about the rooms with no flow
out << "Part 1: " << Part1(start, rooms, distances) << std::endl;
out << "Part 2: " << Part2(start, rooms, distances) << std::endl;
}
2023-01-29 16:47:44 -08:00
TEST_SUITE("2022-16") {
2023-01-28 08:39:08 -08:00
TEST_CASE("example") {
std::istringstream in {
2023-01-28 14:46:00 -08:00
R"(Valve AA has flow rate=0; tunnels lead to valves DD, II, BB
Valve BB has flow rate=13; tunnels lead to valves CC, AA
Valve CC has flow rate=2; tunnels lead to valves DD, BB
Valve DD has flow rate=20; tunnels lead to valves CC, AA, EE
Valve EE has flow rate=3; tunnels lead to valves FF, DD
Valve FF has flow rate=0; tunnels lead to valves EE, GG
Valve GG has flow rate=0; tunnels lead to valves FF, HH
Valve HH has flow rate=22; tunnel leads to valve GG
Valve II has flow rate=0; tunnels lead to valves AA, JJ
Valve JJ has flow rate=21; tunnel leads to valve II
)"};
2023-04-07 09:45:55 -07:00
auto out = std::ostringstream{};
2023-01-31 21:29:04 -08:00
Main(in, out);
CHECK(out.str() == "Part 1: 1651\nPart 2: 1707\n");
2023-01-28 08:39:08 -08:00
}
2023-01-29 16:47:44 -08:00
TEST_CASE("shortest path") {
2023-04-07 09:45:55 -07:00
auto distances = distance_array<int>{boost::extents[4][4]};
2023-01-29 16:47:44 -08:00
std::fill_n(distances.data(), distances.num_elements(), 100);
distances[0][2] = -2;
distances[0][0] = 0;
distances[1][0] = 4;
distances[1][1] = 0;
distances[1][2] = 3;
distances[2][2] = 0;
distances[2][3] = 2;
distances[3][1] = -1;
distances[3][3] = 0;
ShortestDistances(distances);
CHECK(distances[0][0] == 0);
CHECK(distances[0][1] == -1);
CHECK(distances[0][2] == -2);
CHECK(distances[0][3] == 0);
CHECK(distances[1][0] == 4);
CHECK(distances[1][1] == 0);
CHECK(distances[1][2] == 2);
CHECK(distances[1][3] == 4);
CHECK(distances[2][0] == 5);
CHECK(distances[2][1] == 1);
CHECK(distances[2][2] == 0);
CHECK(distances[2][3] == 2);
CHECK(distances[3][0] == 3);
CHECK(distances[3][1] == -1);
CHECK(distances[3][2] == 1);
CHECK(distances[3][3] == 0);
}
2023-02-01 11:23:04 -08:00
}