aocpp/dlx/src/dlx.cpp

171 lines
3.5 KiB
C++
Raw Normal View History

2022-11-19 14:59:21 -08:00
// See http://en.wikipedia.org/wiki/Dancing_Links.
#include "dlx.hpp"
#include <limits>
using namespace dlx;
#define F(i,n) for(int i = 0; i < n; i++)
#define C(i,n,dir) for(cell_ptr i = (n)->dir; i != n; i = i->dir)
Dlx::Dlx() {
root_ = Cell::ColNew();
root_->LR_self();
}
Dlx::~Dlx() {
for (auto const row : rtab_) {
if (row) {
Cell* next;
for (auto cursor = row->R; cursor != row; cursor = next) {
next = cursor->R;
delete cursor;
}
delete row;
}
}
for (auto const col : ctab_) {
if (col) { delete col; }
}
delete root_;
}
auto Dlx::Rows() const -> std::size_t { return rtab_.size(); }
auto Dlx::Cols() const -> std::size_t { return ctab_.size(); }
auto Dlx::AddCol() -> void {
auto c = Cell::ColNew();
c->LR_insert(root_);
c->n = Cols();
ctab_.push_back(c);
}
auto Dlx::AddRow() -> void {
rtab_.push_back(nullptr);
}
auto Dlx::AllocCol(std::size_t n) -> void {
while(Cols() <= n) AddCol();
}
auto Dlx::AllocRow(std::size_t n) -> void {
while(Rows() <= n) AddRow();
}
auto Dlx::MarkOptional(std::size_t col) -> void {
AllocCol(col);
auto c = ctab_[col];
// Prevent undeletion by self-linking.
c->LR_delete();
c->LR_self();
}
auto Dlx::Set(std::size_t row, std::size_t col) -> void {
// We don't bother sorting. DLX works fine with jumbled rows and columns.
// We just have to watch out for duplicates. (Actually, I think the DLX code
// works even with duplicates, though it would be inefficient.)
//
// For a given column, the UD list is ordered in the order that dlx_set()
// is called, not by row number. Similarly for a given row and its LR list.
AllocRow(row);
AllocCol(col);
auto c = ctab_[col];
auto const new1 = [&]() -> Cell* {
auto n = new Cell;
n->n = row;
n->c = c;
c->s++;
n->UD_insert(c);
return n;
};
auto & r = rtab_[row];
if (!r) {
r = new1();
r->LR_self();
return;
}
// Ignore duplicates.
if (r->c->n == col) return;
for (auto cursor = r->R; cursor != r; cursor = cursor->R) {
if (cursor->c->n == col) return;
}
// Otherwise insert at end of LR list.
new1()->LR_insert(r);
}
auto Dlx::PickRow(std::size_t i) -> int {
auto r = rtab_.at(i);
if (!r) return 0; // Empty row.
r->c->CoverCol();
for (auto j = r->R; j != r; j = j->R) {
j->c->CoverCol();
}
return 0;
}
auto Dlx::RemoveRow(std::size_t i) -> int {
auto & r = rtab_.at(i);
if (!r) return 0; // Empty row.
r->UD_delete();
r->c->s--;
for (auto j = r->R; j != r; j = j->R) {
j->UD_delete();
j->c->s--;
}
r = nullptr;
return 0;
}
auto Dlx::Solve(
std::function<void(std::size_t, std::size_t, std::size_t)> try_cb,
std::function<void()> undo_cb,
std::function<void()> found_cb,
std::function<void(std::size_t)> stuck_cb) -> void
{
auto const recurse = [&](auto const& self) -> void {
auto c = root_->R;
if (c == root_) {
found_cb();
return;
}
auto s = std::numeric_limits<std::size_t>::max(); // S-heuristic: choose first most-constrained column.
for (auto i = root_->R; i != root_; i = i->R) {
if (i->s < s) {
s = (c = i)->s;
}
}
if (!s) {
stuck_cb(c->n);
return;
}
c->CoverCol();
for (auto r = c->D; r != c; r = r->D) {
try_cb(c->n, s, r->n);
for (auto j = r->R; j != r; j = j->R) {
j->c->CoverCol();
}
self(self);
undo_cb();
for (auto j = r->L; j != r; j=j->L) {
j->c->UncoverCol();
}
}
c->UncoverCol();
};
recurse(recurse);
}