documentation

This commit is contained in:
Eric Mertens 2023-01-29 16:47:44 -08:00
parent 499fa902fd
commit 30709c7bd7
2 changed files with 115 additions and 27 deletions

View File

@ -1,3 +1,12 @@
/// @file 16.cpp
/// @brief Solution to Advent of Code 2022 Day 16
///
/// This solution follows the following process:
/// 1. Parse the input source into a list of rooms
/// 2. Compute the shortest paths between each room
/// 3. Enumerate all the paths through the graph to find maximum water flow per valve-set.
/// 4. Use the flow/valve summaries to compute the two answers.
#include <bitset>
#include <cstdint>
#include <iostream>
@ -21,11 +30,18 @@
namespace {
using distance_array = boost::multi_array<std::uint64_t, 2>;
/// @brief Array of distances from one node to another.
/// @tparam T distance type
///
/// `distance[i][j]` is the cost to move from node `i` to node `j`
template <typename T>
using distance_array = boost::multi_array<T, 2>;
/// @brief Update distance matrix with transitive shortest paths
/// @tparam T distance type
/// @param dist Single-step distances between nodes (must be square)
auto ShortestDistances(distance_array & dist) -> void
template <typename T>
auto ShortestDistances(distance_array<T> & dist) -> void
{
// FloydWarshall_algorithm
auto const range = boost::irange(dist.size());
@ -40,6 +56,8 @@ auto ShortestDistances(distance_array & dist) -> void
}
}
/// @struct Room
/// @brief A single record from the problem input.
struct Room {
/// @brief Name of the room
std::string name;
@ -49,6 +67,15 @@ struct Room {
std::vector<std::string> connections;
};
/// @brief Parse the input file
/// @param in input stream
/// @return Vector of parsed rooms, one per input line
///
/// The parser will consume input until the end of the stream.
///
/// Input lines should follow the following pattern:
/// * Valve **name** has flow rate= **number** ; tunnels lead to valves **name**, **name** ...
/// * Valve **name** has flow rate= **number** ; tunnel leads to valve **name**
auto Parse(std::istream & in) -> std::vector<Room>
{
std::vector<Room> result;
@ -74,7 +101,7 @@ auto Parse(std::istream & in) -> std::vector<Room>
It b = line.begin();
It e = line.end();
result.emplace_back();
if (!qi::parse(b, e, room_description, result.back())) {
if (!qi::parse(b, e, room_description, result.back()) || b != e) {
throw std::runtime_error{"bad input line"};
}
}
@ -85,7 +112,7 @@ auto Parse(std::istream & in) -> std::vector<Room>
/// @returns starting index and distances
auto GenerateDistances(
std::vector<Room> const& rooms
) -> std::pair<std::size_t, distance_array>
) -> std::pair<std::size_t, distance_array<std::uint64_t>>
{
auto const N = rooms.size();
@ -95,7 +122,7 @@ auto GenerateDistances(
names[room.name] = i;
}
distance_array distances{boost::extents[N][N]};
distance_array<std::uint64_t> distances{boost::extents[N][N]};
// N is longer than any optimal distance by at least 1
std::fill_n(distances.data(), distances.num_elements(), N);
@ -117,12 +144,19 @@ auto GenerateDistances(
return {names.at("AA"), std::move(distances)};
}
/// @brief Bitset used to track which valves have been turned on
using Valves = std::bitset<64>;
/// @struct State
/// @brief Intermediate states for depth-first search in Routes
struct State {
/// @brief Time remaining
std::uint64_t time;
/// @brief Water flow achieved so far
std::uint64_t flow;
/// @brief Current actor location
std::size_t location;
/// @brief Set of valves already opened
Valves valves;
};
@ -136,38 +170,46 @@ auto Routes(
std::size_t const start,
std::uint64_t const initial_time,
std::vector<Room> const& rooms,
distance_array const& distances
distance_array<std::uint64_t> const& distances
) -> std::unordered_map<Valves, std::uint64_t>
{
std::vector<State> states { State{initial_time, 0, start, {}} };
// Maximal flow seen at each set of open valves
std::unordered_map<Valves, std::uint64_t> result;
// Figure out which rooms have flow and are worth visiting at all
std::vector<std::size_t> interesting_rooms;
for (auto [i, room] : rooms | boost::adaptors::indexed()) {
if (room.flow > 0) {
interesting_rooms.push_back(i);
}
}
// Remaining states for depth first search
std::vector<State> states { State{initial_time, 0, start, {}} };
while (!states.empty()) {
auto const state = states.back();
states.pop_back();
auto const i = state.location;
for (auto [j, room] : rooms | boost::adaptors::indexed()) {
if (auto & best = result[state.valves]; best < state.flow) {
best = state.flow;
}
auto const distances_i = distances[state.location];
for (auto const j : interesting_rooms) {
// don't revisit a valve
if (state.valves.test(j)) { continue; }
// don't visit rooms with useless valves
if (room.flow == 0) { continue; }
// don't visit rooms we can't get to in time
auto const cost = distances[i][j];
if (cost+1 >= state.time) { continue; }
// +1 accounts for the cost of actually turning the valve
auto const cost = distances_i[j] + 1;
if (cost >= state.time) { continue; }
auto const time = state.time - cost - 1;
auto const flow = state.flow + room.flow * time;
auto const time = state.time - cost;
auto const flow = state.flow + rooms[j].flow * time;
auto valves = state.valves;
valves.set(j);
// remember the best we've seen for this valve-set
if (result[valves] < flow) {
result[valves] = flow;
}
states.push_back({time, flow, static_cast<std::size_t>(j), valves});
}
}
@ -183,7 +225,7 @@ auto Routes(
auto Part1(
std::size_t const start,
std::vector<Room> const& rooms,
distance_array const& distances
distance_array<std::uint64_t> const& distances
) -> std::uint64_t
{
auto const routes = Routes(start, 30, rooms, distances);
@ -198,26 +240,27 @@ auto Part1(
auto Part2(
std::size_t const start,
std::vector<Room> const& rooms,
distance_array const& distances
distance_array<std::uint64_t> const& distances
) -> std::uint64_t
{
auto const routes = Routes(start, 26, rooms, distances);
auto const end = routes.end();
std::uint64_t result {0};
std::uint64_t best {0};
for (auto it1 = routes.begin(); it1 != end; std::advance(it1, 1)) {
for (auto it2 = std::next(it1); it2 != end; std::advance(it2, 1)) {
// only consider pairs that have disjoint sets of valves
if ((it1->first & it2->first).none()) {
result = std::max(result, it1->second + it2->second);
best = std::max(best, it1->second + it2->second);
}
}
}
return result;
return best;
}
} // namespace
TEST_SUITE("2022-16 examples") {
TEST_SUITE("2022-16") {
TEST_CASE("example") {
std::istringstream in {
R"(Valve AA has flow rate=0; tunnels lead to valves DD, II, BB
@ -236,8 +279,48 @@ Valve JJ has flow rate=21; tunnel leads to valve II
CHECK(1651 == Part1(start, rooms, distances));
CHECK(1707 == Part2(start, rooms, distances));
}
TEST_CASE("shortest path") {
distance_array<int> distances{boost::extents[4][4]};
std::fill_n(distances.data(), distances.num_elements(), 100);
distances[0][2] = -2;
distances[0][0] = 0;
distances[1][0] = 4;
distances[1][1] = 0;
distances[1][2] = 3;
distances[2][2] = 0;
distances[2][3] = 2;
distances[3][1] = -1;
distances[3][3] = 0;
ShortestDistances(distances);
CHECK(distances[0][0] == 0);
CHECK(distances[0][1] == -1);
CHECK(distances[0][2] == -2);
CHECK(distances[0][3] == 0);
CHECK(distances[1][0] == 4);
CHECK(distances[1][1] == 0);
CHECK(distances[1][2] == 2);
CHECK(distances[1][3] == 4);
CHECK(distances[2][0] == 5);
CHECK(distances[2][1] == 1);
CHECK(distances[2][2] == 0);
CHECK(distances[2][3] == 2);
CHECK(distances[3][0] == 3);
CHECK(distances[3][1] == -1);
CHECK(distances[3][2] == 1);
CHECK(distances[3][3] == 0);
}
}
/// @brief Select input source and print solution to part 1 and 2
/// @param argc Command line argument count
/// @param argv Command line arguments
/// @return 0 on success
auto main(int argc, char** argv) -> int
{
auto const rooms = Parse(*aocpp::Startup(argc, argv));

View File

@ -1,6 +1,8 @@
#ifndef AOCPP_STARTUP_HPP_
#define AOCPP_STARTUP_HPP_
/// @file Startup.hpp
#include <fstream>
#include <iostream>
#include <memory>
@ -8,6 +10,9 @@
namespace aocpp {
/// @brief Return the selected input stream or run the test suite
/// @param argc Number of arguments
/// @param argv Command line arguments
auto Startup(int argc, char ** argv) -> std::unique_ptr<std::istream, void(*)(std::istream*)>;
}