/// @file 16.cpp /// @brief Solution to Advent of Code 2022 Day 16 /// /// This solution follows the following process: /// 1. Parse the input source into a list of rooms /// 2. Optimization: put rooms with valves first in the array /// 3. Compute the shortest paths between each room /// 4. Enumerate all the paths through the graph to find maximum water flow per valve-set. /// 5. Use the flow/valve summaries to compute the two answers. #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace { namespace phx = boost::phoenix; namespace qi = boost::spirit::qi; /// @brief The starting room as defined in the problem statement constexpr char const* STARTING_ROOM = "AA"; /// @brief Arbitrary number of valves this solution supports constexpr std::size_t MAX_VALVES = 64; /// @brief Array of distances from one node to another. /// @tparam T distance type /// /// `distance[i][j]` is the cost to move from node `i` to node `j` template using distance_array = boost::multi_array; /// @brief Update single-step distance matrix with transitive shortest paths /// @tparam T distance type /// @param[in,out] dist distance matrix /// /// This implementation uses the Floyd–Warshall algorithm and assumes that /// there are no negative-cost cycles. It also assumes that a path exists /// between all pairs of nodes. template auto ShortestDistances(distance_array & dist) -> void { auto const range = boost::irange(dist.size()); for (auto const k : range) { for (auto const i : range) { for (auto const j : range) { auto const d_ikj = dist[i][k] + dist[k][j]; auto & d_ij = dist[i][j]; if (d_ij > d_ikj) d_ij = d_ikj; } } } } /// @brief A single record from the problem input. struct Room { /// @brief Name of the room std::string name; /// @brief Flow rate of the valve in the room std::uint64_t flow; /// @brief Directly adjacent rooms std::vector connections; }; /// @brief Parse the input file /// @param[in,out] in input stream /// @return Vector of parsed rooms, one per input line /// /// The parser will consume input until the end of the stream. /// /// Input lines should follow the following pattern: /// * Valve **name** has flow rate= **number** ; tunnels lead to valves **name**, **name** ... /// * Valve **name** has flow rate= **number** ; tunnel leads to valve **name** auto Parse(std::istream & in) -> std::vector { std::vector result; std::string line; while (std::getline(in, line)) { using namespace qi::labels; using It = std::string::const_iterator; qi::rule const name = qi::as_string[+qi::alpha]; qi::rule const room_description = "Valve " >> name [ phx::bind(&Room::name, _val) = _1 ] >> " has flow rate=" >> qi::ulong_long [ phx::bind(&Room::flow, _val) = _1 ] >> "; tunnel" >> -qi::string("s") >> " lead" >> -qi::string("s") >> " to valve" >> -qi::string("s") >> " " >> (name % ", ") [ phx::bind(&Room::connections, _val) = _1 ]; It b = line.begin(); It const e = line.end(); result.emplace_back(); if (!qi::parse(b, e, room_description, result.back()) || b != e) { throw std::runtime_error{"bad input line"}; } } return result; } /// @brief Rearrange the rooms so that those with flows come first /// @param[in,out] rooms vector of rooms that gets reordered /// @return number of rooms with with non-zero flows auto FlowsFirst( std::vector & rooms ) -> std::size_t { using namespace phx::placeholders; auto const zeros = boost::range::partition(rooms, phx::bind(&Room::flow, arg1) > 0); return std::distance(boost::begin(rooms), zeros); } /// @brief Computes the distances between rooms and finds the address of the starting room /// @param[in] rooms input list of rooms /// @returns starting index and distances auto GenerateDistances( std::vector const& rooms ) -> std::pair> { auto const N {rooms.size()}; // Associate the names and indexes of each room std::unordered_map names; for (auto [i,room] : rooms | boost::adaptors::indexed()) { names[room.name] = i; } distance_array distances{boost::extents[N][N]}; for (auto const i : boost::irange(rooms.size())) { auto di = distances[i]; // Default value: N is longer than any optimal distance by at least 1 boost::range::fill(di, N); // each room is one away from adjacent rooms for (auto const& name : rooms[i].connections) { di[names[name]] = 1; } // zero distance to self di[i] = 0; } ShortestDistances(distances); return {names.at(STARTING_ROOM), std::move(distances)}; } /// @brief Bitset used to track which valves have been turned on using Valves = std::bitset; /// @brief Intermediate states for depth-first search in Routes struct State { /// @brief Time remaining std::uint64_t time; /// @brief Water flow achieved so far std::uint64_t flow; /// @brief Current actor location std::size_t location; /// @brief Set of valves already opened Valves valves; }; /// @brief Compute all the flows achievable with a set of values /// @param[in] start Index of starting room /// @param[in] initial_time Initial amount of time /// @param[in] rooms Array of rooms from input file /// @param[in] distances Shortest paths between all pairs of rooms /// @return Mapping of maximum flow achievable using a particular set of valves auto Routes( std::size_t const start, std::uint64_t const initial_time, std::vector const& rooms, distance_array const& distances ) -> std::unordered_map { if (rooms.size() > MAX_VALVES) { throw std::runtime_error{"Too many valves"}; } // Maximal flow seen at each set of open valves std::unordered_map result; // Remaining states for depth first search std::vector states {{initial_time, 0, start, {}}}; while (!states.empty()) { auto const state = states.back(); states.pop_back(); if (auto & best = result[state.valves]; best < state.flow) { best = state.flow; } auto const distances_i = distances[state.location]; for (auto const [j, room] : rooms | boost::adaptors::indexed()) { // don't revisit a valve if (state.valves.test(j)) { continue; } // don't visit rooms we can't get to in time // +1 accounts for the cost of actually turning the valve auto const cost = distances_i[j] + 1; if (cost >= state.time) { continue; } auto const time = state.time - cost; auto const flow = state.flow + room.flow * time; auto valves = state.valves; valves.set(j); states.push_back({time, flow, static_cast(j), valves}); } } return result; } /// @brief Maximize the water flow using a single actor and 30 minutes /// @param[in] start Index of the starting room /// @param[in] rooms Rooms from input file /// @param[in] distances Shortest distances between pairs of rooms /// @return Maximum flow achievable auto Part1( std::size_t const start, std::vector const& rooms, distance_array const& distances ) -> std::uint64_t { auto const routes = Routes(start, 30, rooms, distances); return *boost::range::max_element(routes | boost::adaptors::map_values); } /// @brief Maximize the water flow using two actors and 26 minutes /// @param[in] start Index of the starting room /// @param[in] rooms Rooms from input file /// @param[in] distances Shortest distances between pairs of rooms /// @return Maximum flow achievable auto Part2( std::size_t const start, std::vector const& rooms, distance_array const& distances ) -> std::uint64_t { auto const routes = Routes(start, 26, rooms, distances); auto const end = routes.end(); std::uint64_t best {0}; for (auto it1 = routes.begin(); it1 != end; ++it1) { for (auto it2 = std::next(it1); it2 != end; ++it2) { // only consider pairs that have disjoint sets of valves if ((it1->first & it2->first).none()) { best = std::max(best, it1->second + it2->second); } } } return best; } } // namespace /// @brief Print solutions to parts 1 and 2 /// @param[in,out] in input text /// @param[in,out] out output text auto Main(std::istream & in, std::ostream & out) -> void { auto rooms = Parse(in); auto const n = FlowsFirst(rooms); auto const [start, distances] = GenerateDistances(rooms); rooms.resize(n); // forget about the rooms with no flow out << "Part 1: " << Part1(start, rooms, distances) << std::endl; out << "Part 2: " << Part2(start, rooms, distances) << std::endl; } TEST_SUITE("2022-16") { TEST_CASE("example") { std::istringstream in { R"(Valve AA has flow rate=0; tunnels lead to valves DD, II, BB Valve BB has flow rate=13; tunnels lead to valves CC, AA Valve CC has flow rate=2; tunnels lead to valves DD, BB Valve DD has flow rate=20; tunnels lead to valves CC, AA, EE Valve EE has flow rate=3; tunnels lead to valves FF, DD Valve FF has flow rate=0; tunnels lead to valves EE, GG Valve GG has flow rate=0; tunnels lead to valves FF, HH Valve HH has flow rate=22; tunnel leads to valve GG Valve II has flow rate=0; tunnels lead to valves AA, JJ Valve JJ has flow rate=21; tunnel leads to valve II )"}; std::ostringstream out; Main(in, out); CHECK(out.str() == "Part 1: 1651\nPart 2: 1707\n"); } TEST_CASE("shortest path") { distance_array distances{boost::extents[4][4]}; std::fill_n(distances.data(), distances.num_elements(), 100); distances[0][2] = -2; distances[0][0] = 0; distances[1][0] = 4; distances[1][1] = 0; distances[1][2] = 3; distances[2][2] = 0; distances[2][3] = 2; distances[3][1] = -1; distances[3][3] = 0; ShortestDistances(distances); CHECK(distances[0][0] == 0); CHECK(distances[0][1] == -1); CHECK(distances[0][2] == -2); CHECK(distances[0][3] == 0); CHECK(distances[1][0] == 4); CHECK(distances[1][1] == 0); CHECK(distances[1][2] == 2); CHECK(distances[1][3] == 4); CHECK(distances[2][0] == 5); CHECK(distances[2][1] == 1); CHECK(distances[2][2] == 0); CHECK(distances[2][3] == 2); CHECK(distances[3][0] == 3); CHECK(distances[3][1] == -1); CHECK(distances[3][2] == 1); CHECK(distances[3][3] == 0); } }