aocpp/dlx/src/dlx.cpp

272 lines
5.9 KiB
C++

// See http://en.wikipedia.org/wiki/Dancing_Links.
#include "dlx.hpp"
#include <limits>
namespace dlx {
template <Cell* Cell::* direction> struct CellView;
struct Cell {
Cell *U, *D, *L, *R;
std::size_t n;
union {
Cell* c;
std::size_t s;
};
auto LR_self() -> void;
auto UD_self() -> void;
auto LR_delete() -> void;
auto UD_delete() -> void;
auto UD_restore() -> void;
auto LR_restore() -> void;
auto LR_insert(Cell* k) -> void;
auto UD_insert(Cell* k) -> void;
auto CoverCol() -> void;
auto UncoverCol() -> void;
auto rightwards() -> CellView<&Cell::R>;
auto leftwards() -> CellView<&Cell::L>;
auto upwards() -> CellView<&Cell::U>;
auto downwards() -> CellView<&Cell::D>;
auto ColAdd(std::size_t row_id) -> Cell*;
static Cell* ColNew();
};
template <Cell* Cell::* direction>
struct CellView {
Cell* cell;
auto operator==(CellView const&) const -> bool = default;
auto begin() const -> CellView;
auto end() const -> CellView;
auto operator*() -> Cell*;
auto operator++() -> CellView&;
};
template <Cell* Cell::* direction>
auto CellView<direction>::begin() const -> CellView { return {cell->*direction}; }
template <Cell* Cell::* direction>
auto CellView<direction>::end() const -> CellView { return {cell}; }
template <Cell* Cell::* direction>
auto CellView<direction>::operator*() -> Cell* { return cell; }
template <Cell* Cell::* direction>
auto CellView<direction>::operator++() -> CellView& {
cell = cell->*direction;
return *this;
}
auto Cell::LR_self() -> void { L = R = this; }
auto Cell::UD_self() -> void { U = D = this; }
auto Cell::LR_delete() -> void { L->R = R; R->L = L; }
auto Cell::UD_delete() -> void { U->D = D; D->U = U; }
auto Cell::UD_restore() -> void { U->D = D->U = this; }
auto Cell::LR_restore() -> void { L->R = R->L = this; }
auto Cell::LR_insert(Cell* k) -> void { L = k->L; R = k; k->L = k->L->R = this; }
auto Cell::UD_insert(Cell* k) -> void { U = k->U, D = k, k->U = k->U->D = this; }
auto Cell::ColNew() -> Cell*
{
auto c = new Cell;
c->UD_self();
c->s = 0;
return c;
}
auto Cell::ColAdd(std::size_t row_id) -> Cell*
{
auto n = new Cell;
n->n = row_id;
n->c = this;
this->s++;
n->UD_insert(this);
return n;
}
auto Cell::CoverCol() -> void {
LR_delete();
for (auto const i : downwards()) {
for (auto const j : i->rightwards()) {
j->UD_delete();
j->c->s--;
}
}
}
auto Cell::UncoverCol() -> void {
for (auto const i : upwards()) {
for (auto const j : i->leftwards()) {
j->c->s++;
j->UD_restore();
}
}
LR_restore();
}
auto Cell::rightwards() -> CellView<&Cell::R> { return CellView<&Cell::R>{this}; }
auto Cell::leftwards() -> CellView<&Cell::L> { return CellView<&Cell::L>{this}; }
auto Cell::upwards() -> CellView<&Cell::U> { return CellView<&Cell::U>{this}; }
auto Cell::downwards() -> CellView<&Cell::D> { return CellView<&Cell::D>{this}; }
Dlx::Dlx() {
root_ = Cell::ColNew();
root_->LR_self();
}
Dlx::~Dlx() {
for (auto const row : rtab_) {
if (row) {
auto cursor = row->R;
// manual iteration because we have to save next _before_ deleting cursor
while (cursor != row) {
auto tmp = cursor;
cursor = cursor->R;
delete tmp;
}
delete row;
}
}
for (auto const col : ctab_) {
delete col;
}
delete root_;
}
Dlx::Dlx(Dlx && dlx) : ctab_{}, rtab_{}, root_{}
{
std::swap(ctab_, dlx.ctab_);
std::swap(rtab_, dlx.rtab_);
std::swap(root_, dlx.root_);
}
auto Dlx::operator=(Dlx && dlx) -> Dlx& {
if (this != &dlx) {
this->~Dlx();
new (this) Dlx(std::move(dlx));
}
return *this;
}
auto Dlx::Rows() const -> std::size_t { return rtab_.size(); }
auto Dlx::Cols() const -> std::size_t { return ctab_.size(); }
auto Dlx::AllocCol(std::size_t n) -> void {
while(Cols() <= n) {
auto c = Cell::ColNew();
c->LR_insert(root_);
c->n = Cols();
ctab_.push_back(c);
}
}
auto Dlx::AllocRow(std::size_t n) -> void {
while (Rows() <= n) {
rtab_.push_back(nullptr);
}
}
auto Dlx::MarkOptional(std::size_t col) -> void {
AllocCol(col);
auto c = ctab_[col];
// Prevent undeletion by self-linking.
c->LR_delete();
c->LR_self();
}
auto Dlx::Set(std::size_t row, std::size_t col) -> void {
AllocRow(row);
AllocCol(col);
auto c = ctab_[col];
auto & r = rtab_[row];
if (!r) {
r = c->ColAdd(row);
r->LR_self();
return;
}
// Ignore duplicates.
if (r->c->n == col) return;
for (auto const cursor : r->rightwards()) {
if (cursor->c->n == col) return;
}
// Otherwise insert at end of LR list.
c->ColAdd(row)->LR_insert(r);
}
auto Dlx::PickRow(std::size_t i) -> void {
if (auto r = rtab_.at(i)) {
r->c->CoverCol();
for (auto const j : r->rightwards()) {
j->c->CoverCol();
}
}
}
auto Dlx::RemoveRow(std::size_t i) -> void {
if (auto & r = rtab_.at(i)) {
r->UD_delete();
r->c->s--;
for (auto const j : r->rightwards()) {
j->UD_delete();
j->c->s--;
}
r = nullptr;
}
}
auto Dlx::Solve(
std::function<void(std::size_t, std::size_t, std::size_t)> try_cb,
std::function<void()> undo_cb,
std::function<void()> found_cb,
std::function<void(std::size_t)> stuck_cb) -> void
{
auto const recurse = [&](auto const& self) -> void {
auto c = root_->R;
if (c == root_) {
found_cb();
return;
}
auto s = std::numeric_limits<std::size_t>::max();
for (auto const i : root_->rightwards()) {
if (i->s < s) {
s = (c = i)->s;
if (s == 0) {
stuck_cb(c->n);
return;
}
}
}
c->CoverCol();
for (auto const r : c->downwards()) {
try_cb(c->n, s, r->n);
for (auto const j : r->rightwards()) {
j->c->CoverCol();
}
self(self);
undo_cb();
for (auto const j : r->leftwards()) {
j->c->UncoverCol();
}
}
c->UncoverCol();
};
recurse(recurse);
}
} // namespace