/** Implementation of Ascon-Based Lightweight Cryptography Reference: Meltem Sönmez Turan, Kerry A. McKay, Donghoon Chang, Jinkeon Kang, John Kelsey (2025) Ascon-Based Lightweight Cryptography Standards for Constrained Devices. (National Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) NIST SP 800-232. https://doi.org/10.6028/NIST.SP.800-232 */ module Ascon where // 2.1. Auxiliary Functions /// Parse function. parse : {r, n} (fin n, fin r, 0 < r) => [n] -> ([n/r][r], [n%r]) parse (M_ # Ml) = (split M_, Ml) /// Padding rule. pad : {r, n} (n < r, fin r) => [n] -> [r] pad M = M # 0b1 # 0 toBlocks : {r, n} (r >= 1, fin r, fin n) => [n] -> [n / r + 1][r] toBlocks M = M1 # [pad M2] where (M1, M2) = parse M // 3. Ascon Permutations type constraint ValidRnd rnd = (1 <= rnd, rnd <= 16) Ascon_p : {rnd} (ValidRnd rnd) => State -> State Ascon_p S = foldl p`{rnd} S (drop`{back=rnd} Const) p : {rnd} (ValidRnd rnd) => State -> [64] -> State p S ci = pL (pS (pC S ci)) // 3.1. Internal State type State = [5][64] // 3.2. Constant-Addition Layer pC pC : State -> [64] -> State pC [S0, S1, S2, S3, S4] ci = [S0, S1, S2 ^ ci, S3, S4] /// Table 5. The constants constᵢ to derive round constants of the Ascon permutations Const : [16][64] Const = [ 0x000000000000003c , 0x000000000000002d , 0x000000000000001e , 0x000000000000000f , 0x00000000000000f0 , 0x00000000000000e1 , 0x00000000000000d2 , 0x00000000000000c3 , 0x00000000000000b4 , 0x00000000000000a5 , 0x0000000000000096 , 0x0000000000000087 , 0x0000000000000078 , 0x0000000000000069 , 0x000000000000005a , 0x000000000000004b ] // 3.3. Substitution Layer pS pS : State -> State pS S = transpose (map SBox (transpose S)) SBox : [5] -> [5] SBox i = SBoxTable@i /// Table 6. SBoxTable : [32][5] SBoxTable = map drop [ 0x04, 0x0b, 0x1f, 0x14, 0x1a, 0x15, 0x09, 0x02, 0x1b, 0x05, 0x08, 0x12, 0x1d, 0x03, 0x06, 0x1c , 0x1e, 0x13, 0x07, 0x0e, 0x00, 0x0d, 0x11, 0x18, 0x10, 0x0c, 0x01, 0x19, 0x16, 0x0a, 0x0f, 0x17 ] // 3.4. Linear Diffusion Layer pL pL : State -> State pL [S0, S1, S2, S3, S4] = [ sigma S0 19 28 , sigma S1 61 39 , sigma S2 1 6 , sigma S3 10 17 , sigma S4 7 41 ] where sigma : [64] -> [6] -> [6] -> [64] sigma x i j = x ^ (x >>> i) ^ (x >>> j) little_bytes : {n} (fin n) => [8*n] -> [8*n] little_bytes M = join (map reverse (groupBy`{8} M))