/** Implementation of Ascon-Based Lightweight Cryptography Reference: Meltem SΓΆnmez Turan, Kerry A. McKay, Donghoon Chang, Jinkeon Kang, John Kelsey (2025) Ascon-Based Lightweight Cryptography Standards for Constrained Devices. (National Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) NIST SP 800-232. https://doi.org/10.6028/NIST.SP.800-232 */ module Ascon where // 2.1. Auxiliary Functions /// Parse function. /// /// The parse(𝑋, π‘Ÿ) function parses the input bitstring 𝑋 into a sequence /// of blocks 𝑋₀, 𝑋₁, …, 𝑋̃ℓ, where 𝓁 ← ⌊|𝑋|/π‘ŸβŒ‹ (i.e., 𝑋 ← 𝑋₀ βˆ₯ 𝑋₁ βˆ₯ … βˆ₯ 𝑋̃ℓ). /// The 𝑋ᡒ blocks for 0 ≀ i ≀ 𝓁 βˆ’ 1 each have a bit length π‘Ÿ, whereas /// 0 ≀ |𝑋̃ℓ| ≀ π‘Ÿ βˆ’ 1 (see Algorithm 1). When |𝑋| mod π‘Ÿ = 0, the final /// block is empty (i.e., |𝑋̃ℓ| = 0). parse : {r, n} (fin n, fin r, r >= 1) => [n] -> ([n/r][r], [n%r]) parse (M_ # Ml) = (split M_, Ml) /// Padding rule. /// /// The function pad(𝑋, π‘Ÿ) appends the bit 1 to the bitstring 𝑋, followed /// bythe bitstring 0Κ², where 𝑗 is equal to (βˆ’|𝑋|βˆ’1) mod π‘Ÿ. The length of /// the output bitstring is a multiple of π‘Ÿ (see Algorithm 2). For examples /// of padding when representing the data as 64-bit unsigned integers, see /// Appendix A.2. pad : {r, n} (n < r, fin r) => [n] -> [r] pad M = M # 0b1 # 0 /// Combination of parse and pad that splits a bitstring into a sequence /// of integers using Cryptol's native big-endian representation. toBlocks : {r, n} (r >= 1, fin r, fin n) => [n] -> [n / r + 1][r] toBlocks M = map reverse (M1 # [pad M2]) where (M1, M2) = parse M // 3. Ascon Permutations type constraint ValidRnd rnd = rnd <= 16 /// Core permutation function parameterized by a round count. Ascon_p : {rnd} (ValidRnd rnd) => State -> State Ascon_p S = foldl round S (drop`{back=rnd} Const) /// Single round of the Ascon-p permutation. round : State -> [64] -> State round S ci = pL (pS (pC S ci)) // 3.1. Internal State /// The permutations operate on the 320-bit state 𝑆, which is represented /// as five 64-bit words denoted as 𝑆ᡒ for 0 ≀ 𝑖 ≀ 4: /// /// 𝑆 = 𝑆₀ β€– 𝑆₁ β€– 𝑆₂ β€– 𝑆₃ β€– 𝑆₄ /// /// Let 𝑠ᡒⱼ represent the 𝑗th bit of 𝑆ᡒ, 0 ≀ 𝑗 < 64. In this specification /// of the Ascon permutation, each state word represents a 64-bit unsigned /// integer, where the least significant bit is the rightmost bit. Details /// on other representations of the state can be found in Appendix A. type State = [5][64] // 3.2. Constant-Addition Layer pC /// The constant cα΅’ of round 𝑖 of the Ascon permutation Ascon-p[π‘Ÿπ‘›π‘‘] /// (instantiated with π‘Ÿπ‘›π‘‘ rounds) for π‘Ÿπ‘›π‘‘ ≀ 16 and 0 ≀ 𝑖 < π‘Ÿπ‘›π‘‘ βˆ’ 1 /// is defined as /// /// cα΅’ = const[16 βˆ’ π‘Ÿπ‘›π‘‘ + 𝑖] /// /// where const[0],…,const[15] are defined in Table 5. The constant-addition /// layer 𝑃𝑐 adds a 64-bit round constant cα΅’ to 𝑆₂ in round 𝑖, for i β‰₯ 0, /// /// 𝑆₂ = 𝑆₂ βŠ• cα΅’. pC : State -> [64] -> State pC [S0, S1, S2, S3, S4] ci = [S0, S1, S2 ^ ci, S3, S4] /// Table 5. The constants constα΅’ to derive round constants of the Ascon /// permutations Const : [16][64] Const = [ 0x000000000000003c , 0x000000000000002d , 0x000000000000001e , 0x000000000000000f , 0x00000000000000f0 , 0x00000000000000e1 , 0x00000000000000d2 , 0x00000000000000c3 , 0x00000000000000b4 , 0x00000000000000a5 , 0x0000000000000096 , 0x0000000000000087 , 0x0000000000000078 , 0x0000000000000069 , 0x000000000000005a , 0x000000000000004b ] // 3.3. Substitution Layer pS pS : State -> State pS S = transpose (map SBox (transpose S)) SBox : [5] -> [5] SBox i = SBoxTable@i /// Table 6. SBoxTable : [32][5] SBoxTable = map drop [ 0x04, 0x0b, 0x1f, 0x14, 0x1a, 0x15, 0x09, 0x02 , 0x1b, 0x05, 0x08, 0x12, 0x1d, 0x03, 0x06, 0x1c , 0x1e, 0x13, 0x07, 0x0e, 0x00, 0x0d, 0x11, 0x18 , 0x10, 0x0c, 0x01, 0x19, 0x16, 0x0a, 0x0f, 0x17 ] property SBoxCorrect x0 x1 x2 x3 x4 = [y0, y1, y2, y3, y4] == SBox [x0, x1, x2, x3, x4] where y0 = x4&&x1 ^ x3 ^ x2&&x1 ^ x2 ^ x1&&x0 ^ x1 ^ x0 y1 = x4 ^ x3&&x2 ^ x3&&x1 ^ x3 ^ x2&&x1 ^ x2 ^ x1 ^ x0 y2 = x4&&x3 ^ x4 ^ x2 ^ x1 ^ 1 y3 = x4&&x0 ^ x4 ^ x3&&x0 ^ x3 ^ x2 ^ x1 ^ x0 y4 = x4&&x1 ^ x4 ^ x3 ^ x1&&x0 ^ x1 // 3.4. Linear Diffusion Layer pL pL : State -> State pL [S0, S1, S2, S3, S4] = [ sigma S0 19 28 , sigma S1 61 39 , sigma S2 1 6 , sigma S3 10 17 , sigma S4 7 41 ] where sigma : [64] -> [6] -> [6] -> [64] sigma x i j = x ^ (x >>> i) ^ (x >>> j) wordsToBits : {w,n} (fin w) => [n][w] -> [w*n] wordsToBits M = join (map reverse M) bitsToWords : {w,n} (fin w) => [w*n] -> [n][w] bitsToWords M = map reverse (split M) // 4. Authenticated Encryption Schema: Ascon-AEAD128 /// Encryption using Ascon-AEAD128 /// /// Parameters: /// - Key /// - Nonce /// - Additional data /// - Plaintext /// /// Returns: /// - Authenticated ciphertext AEAD128_encrypt : {a, p} (fin a, fin p) => [128] -> [128] -> [a] -> [p] -> [p + 128] AEAD128_encrypt K N A P = C # T where // key and nonce as two 64-bit integers [K0,K1] = bitsToWords K [N0,N1] = bitsToWords N S0 = Ascon_p`{12} [Ascon_AEAD128_IV, K0, K1, N0, N1] ^ [0, 0, 0, K0, K1] SA = AddAD S0 A SCs = [XorBlock s p | s <- [SA] # map Ascon_p`{8} SCs | p <- toBlocks P] C = take (join (map ExtractC SCs)) ST = Ascon_p`{12} (last SCs ^ [0, 0, K0, K1, 0]) T = ExtractT ST ^ K /// Decryption using Ascon-AEAD128 /// /// Parameters: /// - Key /// - Nonce /// - Additional data /// - Ciphertext /// /// Returns: /// - Some plaintext on success /// - None when message authentication fails AEAD128_decrypt : {a, p} (fin a, fin p) => [128] -> [128] -> [a] -> [p + 128] -> Option [p] AEAD128_decrypt K N A (Cs_ # Cl # T) = if T == T' then Some P else trace "P" P None where // key and nonce as two 64-bit integers [K0,K1] = bitsToWords K [N0,N1] = bitsToWords N S0 = Ascon_p`{12} [Ascon_AEAD128_IV, K0, K1, N0, N1] ^ [0, 0, 0, K0, K1] SA = AddAD S0 A Cs = split`{p/128, 128} Cs_ SCs # [SCl] = [SA] # [Ascon_p`{8} (AssignC s c) | s <- SCs | c <- Cs] Plmask # SCl' = ExtractC SCl Sl' = AssignC SCl (Cl # (0b1#0 ^ SCl')) Ps = zipWith (\x y -> ExtractC x ^ y) SCs Cs Pl = Plmask ^ Cl P = join Ps # Pl ST = Ascon_p`{12} (Sl' ^ [0, 0, K0, K1, 0]) T' = ExtractT ST ^ K AEAD128_encrypt_bytes : {a, p} (fin a, fin p) => [16][8] -> [16][8] -> [a][8] -> [p][8] -> [p + 16][8] AEAD128_encrypt_bytes K N A P = bitsToWords (AEAD128_encrypt (wordsToBits K) (wordsToBits N) (wordsToBits A) (wordsToBits P)) AEAD128_decrypt_bytes : {a, p} (fin a, fin p) => [16][8] -> [16][8] -> [a][8] -> [p + 16][8] -> Option ([p][8]) AEAD128_decrypt_bytes K N A C = case AEAD128_decrypt (wordsToBits K) (wordsToBits N) (wordsToBits A) (wordsToBits C) of None -> None Some p -> Some (bitsToWords p) AddAD : {a} (fin a) => State -> [a] -> State AddAD S A | a == 0 => DomainSep S | a > 0 => DomainSep (foldl AbsorbBlock128 S (toBlocks A)) DomainSep : State -> State DomainSep [s0, s1, s2, s3, s4] = [s0, s1, s2, s3, s4 ^ 0b1 # 0] AbsorbBlock128 : State -> [128] -> State AbsorbBlock128 S X = Ascon_p`{8} (XorBlock S X) XorBlock : State -> [128] -> State XorBlock [s0, s1, s2, s3, s4] (xhi # xlo) = [s0 ^ xlo, s1 ^ xhi, s2, s3, s4] ExtractC : State -> [128] ExtractC [s0, s1, _, _, _] = wordsToBits [s0, s1] AssignC : State -> [128] -> State AssignC [_, _, s2, s3, s4] C = bitsToWords C # [s2, s3, s4] ExtractT : State -> [128] ExtractT [_, _, _, s3, s4] = wordsToBits [s3, s4] Ascon_AEAD128_IV : [64] Ascon_AEAD128_IV = 0x00001000808c0001 // 5. Hash and eXtendable-Output Functions (XOFs) hashBlocks : {n} (fin n) => [64] -> [n][64] -> [inf] hashBlocks IV Ms = wordsToBits [head S | S <- iterate Ascon_p`{12} Sn] where S0 = Ascon_p`{12} [IV, 0, 0, 0, 0] Sn = foldl AbsorbBlock64 S0 Ms AbsorbBlock64 : State -> [64] -> State AbsorbBlock64 [s0, s1, s2, s3, s4] X = Ascon_p`{12} [X ^ s0, s1, s2, s3, s4] /// 5.1. Specification of Ascon-Hash256 Hash256 : {n} (fin n) => [n] -> [256] Hash256 M = take (hashBlocks Hash256_IV (toBlocks M)) Hash256_bytes : {n} (fin n) => [n][8] -> [32][8] Hash256_bytes M = bitsToWords (Hash256 (wordsToBits M)) Hash256_IV : [64] Hash256_IV = 0x0000080100cc0002 // 5.2. Specification of Ascon-XOF128 XOF128 : {r, n} (fin n, fin r) => [n] -> [r] XOF128 M = take (hashBlocks XOF128_IV (toBlocks M)) XOF128_bytes : {r, n} (fin n, fin r) => [n][8] -> [r][8] XOF128_bytes M = bitsToWords (XOF128 (wordsToBits M)) XOF128_IV : [64] XOF128_IV = 0x0000080000cc0003 // 5.3. Specification of Ascon-CXOF128 CXOF128 : {r, c, n} (fin n, fin r, fin c, 64 >= width c) => [c] -> [n] -> [r] CXOF128 Z M = take (hashBlocks CXOF128_IV Ms) where Ms = [`c] # toBlocks Z # toBlocks M CXOF128_bytes : {r, z, n} (fin n, fin r, 61 >= width z) => [z][8] -> [n][8] -> [r][8] CXOF128_bytes Z M = bitsToWords (CXOF128 (wordsToBits Z) (wordsToBits M)) CXOF128_IV : [64] CXOF128_IV = 0x0000080000cc0004