{-# Language QuasiQuotes, ImportQualifiedPost #-}
{-|
Module      : Main
Description : Day 20 solution
Copyright   : (c) Eric Mertens, 2017
License     : ISC
Maintainer  : emertens@gmail.com

<http://adventofcode.com/2017/day/20>

Day 20 has us implement a simple particle motion simulator.

Instead of implementing some detection for a stable state
I just run this program and wait a few moments for things
to stabilize before I kill it. I print incremental output so I
can see how quickly things seem to settle.

-}
module Main where

import Advent (format, minimumMaybe)
import Data.Foldable (toList)
import Data.IntSet (IntSet)
import Data.IntSet qualified as IntSet
import Data.List (foldl', tails, intersect)
import Data.Map qualified as Map
import Linear (V2(V2), V3(V3), quadrance)
import Linear.Matrix as LM (transpose)

-- | Print the solutions. Input file can be overridden via command-line
-- arguments.
main :: IO ()
IO ()
main =
 do input <- [format|2017 20 (p=<%d,%d,%d>, v=<%d,%d,%d>, a=<%d,%d,%d>%n)*|]
    let particles = [(Int -> Double) -> V3 Int -> V3 Double
forall a b. (a -> b) -> V3 a -> V3 b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Int -> Double
forall a b. (Integral a, Num b) => a -> b
fromIntegral (V3 Int -> V3 Double) -> V3 (V3 Int) -> V3 (V3 Double)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> V3 Int -> V3 Int -> V3 Int -> V3 (V3 Int)
forall a. a -> a -> a -> V3 a
V3 (Int -> Int -> Int -> V3 Int
forall a. a -> a -> a -> V3 a
V3 Int
p1 Int
p2 Int
p3) (Int -> Int -> Int -> V3 Int
forall a. a -> a -> a -> V3 a
V3 Int
v1 Int
v2 Int
v3) (Int -> Int -> Int -> V3 Int
forall a. a -> a -> a -> V3 a
V3 Int
a1 Int
a2 Int
a3) | (Int
p1,Int
p2,Int
p3,Int
v1,Int
v2,Int
v3,Int
a1,Int
a2,Int
a3) <- [(Int, Int, Int, Int, Int, Int, Int, Int, Int)]
input]
    print (part1 particles)
    print (part2 particles)

-- | Characterize a particle by list of derivatives. The first vector is
-- is the position of the particle. Each of the following vectors is
-- an increasingly higher order derivative of the position.
type Particle = V3 (V3 Double)

-- | Compute the infinite list of indexes of the particles that are
-- nearest to the origin while iterating the system one time step
-- at a time.
part1 :: [Particle] -> Int
part1 :: [V3 (V3 Double)] -> Int
part1 = (V3 (V3 Double) -> V3 Double) -> [V3 (V3 Double)] -> Int
forall b a. Ord b => (a -> b) -> [a] -> Int
minimumIndexOn ((V3 Double -> Double) -> V3 (V3 Double) -> V3 Double
forall a b. (a -> b) -> V3 a -> V3 b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap V3 Double -> Double
forall a. Num a => V3 a -> a
forall (f :: * -> *) a. (Metric f, Num a) => f a -> a
quadrance)

part2 :: [Particle] -> Int
part2 :: [V3 (V3 Double)] -> Int
part2 [V3 (V3 Double)]
ps = [V3 (V3 Double)] -> Int
forall a. [a] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [V3 (V3 Double)]
ps Int -> Int -> Int
forall a. Num a => a -> a -> a
- IntSet -> Int
IntSet.size ([[V2 Int]] -> IntSet
process ([V3 (V3 Double)] -> [[V2 Int]]
toEvents [V3 (V3 Double)]
ps))

stepParticle :: Particle -> Particle
stepParticle :: V3 (V3 Double) -> V3 (V3 Double)
stepParticle (V3 V3 Double
a V3 Double
v V3 Double
s) = V3 Double -> V3 Double -> V3 Double -> V3 (V3 Double)
forall a. a -> a -> a -> V3 a
V3 V3 Double
a V3 Double
v' V3 Double
s'
  where
    v' :: V3 Double
v' = V3 Double
a V3 Double -> V3 Double -> V3 Double
forall a. Num a => a -> a -> a
+ V3 Double
v
    s' :: V3 Double
s' = V3 Double
s V3 Double -> V3 Double -> V3 Double
forall a. Num a => a -> a -> a
+ V3 Double
v'

-- | Compute the index of the list element with the minimum projection.
--
-- >>> minimumIndexOn negate [3, -10, 5, -9]
-- 2
minimumIndexOn :: Ord b => (a -> b) {- ^ projection -} -> [a] -> Int
minimumIndexOn :: forall b a. Ord b => (a -> b) -> [a] -> Int
minimumIndexOn a -> b
f [a]
xs = (b, Int) -> Int
forall a b. (a, b) -> b
snd ([(b, Int)] -> (b, Int)
forall a. Ord a => [a] -> a
forall (t :: * -> *) a. (Foldable t, Ord a) => t a -> a
minimum ((a -> b) -> [a] -> [b]
forall a b. (a -> b) -> [a] -> [b]
map a -> b
f [a]
xs [b] -> [Int] -> [(b, Int)]
forall a b. [a] -> [b] -> [(a, b)]
`zip` [Int
0..]))

collide :: V3 (V3 Double) -> V3 (V3 Double) -> Maybe Double
collide :: V3 (V3 Double) -> V3 (V3 Double) -> Maybe Double
collide V3 (V3 Double)
p1 V3 (V3 Double)
p2
  = [Double] -> Maybe Double
forall a. Ord a => [a] -> Maybe a
minimumMaybe     -- only the earliest collision will matter
  ([Double] -> Maybe Double) -> [Double] -> Maybe Double
forall a b. (a -> b) -> a -> b
$ (Double -> Bool) -> [Double] -> [Double]
forall a. (a -> Bool) -> [a] -> [a]
filter (Double -> Double -> Bool
forall a. Ord a => a -> a -> Bool
>= Double
0)    -- simulation starts and time 0 and moves forward
  ([Double] -> [Double]) -> [Double] -> [Double]
forall a b. (a -> b) -> a -> b
$ ([Double] -> [Double] -> [Double]) -> V3 [Double] -> [Double]
forall a. (a -> a -> a) -> V3 a -> a
forall (t :: * -> *) a. Foldable t => (a -> a -> a) -> t a -> a
foldl1 [Double] -> [Double] -> [Double]
forall a. Eq a => [a] -> [a] -> [a]
intersect -- x,y,z components must collide at same time step
  (V3 [Double] -> [Double]) -> V3 [Double] -> [Double]
forall a b. (a -> b) -> a -> b
$ (V3 Double -> [Double]) -> V3 (V3 Double) -> V3 [Double]
forall a b. (a -> b) -> V3 a -> V3 b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (V3 Double -> [Double]
zeros (V3 Double -> [Double])
-> (V3 Double -> V3 Double) -> V3 Double -> [Double]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. V3 Double -> V3 Double
toPoly)
  (V3 (V3 Double) -> V3 [Double]) -> V3 (V3 Double) -> V3 [Double]
forall a b. (a -> b) -> a -> b
$ V3 (V3 Double)
p1 V3 (V3 Double) -> V3 (V3 Double) -> V3 (V3 Double)
forall a. Num a => a -> a -> a
- V3 (V3 Double)
p2

-- | Compute coefficients of the polynomial corresponding
-- to a triple of the particle's acceleration, velocity, and position.
toPoly :: V3 Double -> V3 Double
toPoly :: V3 Double -> V3 Double
toPoly (V3 Double
a Double
v Double
s) = Double -> Double -> Double -> V3 Double
forall a. a -> a -> a -> V3 a
V3 (Double
aDouble -> Double -> Double
forall a. Fractional a => a -> a -> a
/Double
2) (Double
aDouble -> Double -> Double
forall a. Fractional a => a -> a -> a
/Double
2 Double -> Double -> Double
forall a. Num a => a -> a -> a
+ Double
v) Double
s

-- | Given coefficients @'V3' a b c@ compute the values of @x@
-- such that @a*x^2 + b*x + c = 0@. When all coefficients are
-- @0@ we just return @0@ as this is enough for our purposes.
zeros ::
  V3 Double {- ^ polynomial coefficients                       -} ->
  [Double]  {- ^ list of values when polynomial evaluates to 0 -}
zeros :: V3 Double -> [Double]
zeros (V3 Double
0 Double
0 Double
0) = [Double
0] -- always zero, time 0 is the earliest we care
zeros (V3 Double
0 Double
0 Double
_) = []
zeros (V3 Double
0 Double
b Double
c) = [-Double
cDouble -> Double -> Double
forall a. Fractional a => a -> a -> a
/Double
b]
zeros (V3 Double
a Double
b Double
c) =
  case Double -> Double -> Ordering
forall a. Ord a => a -> a -> Ordering
compare Double
z Double
0 of
    Ordering
LT -> []
    Ordering
EQ -> [-Double
b Double -> Double -> Double
forall a. Fractional a => a -> a -> a
/ Double
2Double -> Double -> Double
forall a. Num a => a -> a -> a
*Double
a]
    Ordering
GT -> [(-Double
b Double -> Double -> Double
forall a. Num a => a -> a -> a
+ Double -> Double
forall a. Floating a => a -> a
sqrt Double
z) Double -> Double -> Double
forall a. Fractional a => a -> a -> a
/ (Double
2Double -> Double -> Double
forall a. Num a => a -> a -> a
*Double
a), (-Double
b Double -> Double -> Double
forall a. Num a => a -> a -> a
- Double -> Double
forall a. Floating a => a -> a
sqrt Double
z) Double -> Double -> Double
forall a. Fractional a => a -> a -> a
/ (Double
2Double -> Double -> Double
forall a. Num a => a -> a -> a
*Double
a)]
  where
    z :: Double
z = Double
bDouble -> Double -> Double
forall a. Num a => a -> a -> a
*Double
b Double -> Double -> Double
forall a. Num a => a -> a -> a
- Double
4Double -> Double -> Double
forall a. Num a => a -> a -> a
*Double
aDouble -> Double -> Double
forall a. Num a => a -> a -> a
*Double
c

-- | Compute the collisions that will happen between a list of
-- particles grouped by the time-step that they happen at.
toEvents :: [Particle] -> [[V2 Int]]
toEvents :: [V3 (V3 Double)] -> [[V2 Int]]
toEvents [V3 (V3 Double)]
ps
  = Map Double [V2 Int] -> [[V2 Int]]
forall a. Map Double a -> [a]
forall (t :: * -> *) a. Foldable t => t a -> [a]
toList
  (Map Double [V2 Int] -> [[V2 Int]])
-> Map Double [V2 Int] -> [[V2 Int]]
forall a b. (a -> b) -> a -> b
$ ([V2 Int] -> [V2 Int] -> [V2 Int])
-> [(Double, [V2 Int])] -> Map Double [V2 Int]
forall k a. Ord k => (a -> a -> a) -> [(k, a)] -> Map k a
Map.fromListWith [V2 Int] -> [V2 Int] -> [V2 Int]
forall a. [a] -> [a] -> [a]
(++)
    [ (Double
t,[Int -> Int -> V2 Int
forall a. a -> a -> V2 a
V2 Int
i Int
j])
      | (Int
i,V3 (V3 Double)
v1):[(Int, V3 (V3 Double))]
vs <- [(Int, V3 (V3 Double))] -> [[(Int, V3 (V3 Double))]]
forall a. [a] -> [[a]]
tails ([Int
0..] [Int] -> [V3 (V3 Double)] -> [(Int, V3 (V3 Double))]
forall a b. [a] -> [b] -> [(a, b)]
`zip` (V3 (V3 Double) -> V3 (V3 Double))
-> [V3 (V3 Double)] -> [V3 (V3 Double)]
forall a b. (a -> b) -> [a] -> [b]
map V3 (V3 Double) -> V3 (V3 Double)
forall (g :: * -> *) (f :: * -> *) a.
(Distributive g, Functor f) =>
f (g a) -> g (f a)
LM.transpose [V3 (V3 Double)]
ps)
      , (Int
j,V3 (V3 Double)
v2)    <- [(Int, V3 (V3 Double))]
vs
      , Just Double
t    <- [V3 (V3 Double) -> V3 (V3 Double) -> Maybe Double
collide V3 (V3 Double)
v1 V3 (V3 Double)
v2] ]

process :: [[V2 Int]] -> IntSet
process :: [[V2 Int]] -> IntSet
process = (IntSet -> [V2 Int] -> IntSet) -> IntSet -> [[V2 Int]] -> IntSet
forall b a. (b -> a -> b) -> b -> [a] -> b
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl' IntSet -> [V2 Int] -> IntSet
runGeneration IntSet
IntSet.empty

runGeneration ::
  IntSet   {- ^ previously collided particles       -} ->
  [V2 Int] {- ^ possible collisions this time-step  -} ->
  IntSet   {- ^ dead particles after this time-step -}
runGeneration :: IntSet -> [V2 Int] -> IntSet
runGeneration IntSet
dead [V2 Int]
xs =
  (IntSet -> Int -> IntSet) -> IntSet -> [Int] -> IntSet
forall b a. (b -> a -> b) -> b -> [a] -> b
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl' ((Int -> IntSet -> IntSet) -> IntSet -> Int -> IntSet
forall a b c. (a -> b -> c) -> b -> a -> c
flip Int -> IntSet -> IntSet
IntSet.insert) IntSet
dead
    [ Int
c | V2 Int
x <- [V2 Int]
xs
        , (Int -> Bool) -> V2 Int -> Bool
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all (Int -> IntSet -> Bool
`IntSet.notMember` IntSet
dead) V2 Int
x
        , Int
c <- V2 Int -> [Int]
forall a. V2 a -> [a]
forall (t :: * -> *) a. Foldable t => t a -> [a]
toList V2 Int
x ]