{-# Language QuasiQuotes, TemplateHaskell, BlockArguments #-}
module Main (main) where
import Advent (format, stageTH)
import Data.Bits ((.&.), (.|.))
import Data.IntMap (IntMap)
import qualified Data.IntMap.Strict as IntMap
import Data.Map (Map)
import qualified Data.Map as Map
import Data.Vector (Vector)
import qualified Data.Vector as Vector
data C = Caddi | Caddr | Cmuli | Cmulr | Cseti | Csetr
| Cbani | Cbanr | Cbori | Cborr
| Cgtir | Cgtri | Cgtrr
| Ceqir | Ceqri | Ceqrr
deriving (C -> C -> Bool
(C -> C -> Bool) -> (C -> C -> Bool) -> Eq C
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
$c== :: C -> C -> Bool
== :: C -> C -> Bool
$c/= :: C -> C -> Bool
/= :: C -> C -> Bool
Eq, Eq C
Eq C =>
(C -> C -> Ordering)
-> (C -> C -> Bool)
-> (C -> C -> Bool)
-> (C -> C -> Bool)
-> (C -> C -> Bool)
-> (C -> C -> C)
-> (C -> C -> C)
-> Ord C
C -> C -> Bool
C -> C -> Ordering
C -> C -> C
forall a.
Eq a =>
(a -> a -> Ordering)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> a)
-> (a -> a -> a)
-> Ord a
$ccompare :: C -> C -> Ordering
compare :: C -> C -> Ordering
$c< :: C -> C -> Bool
< :: C -> C -> Bool
$c<= :: C -> C -> Bool
<= :: C -> C -> Bool
$c> :: C -> C -> Bool
> :: C -> C -> Bool
$c>= :: C -> C -> Bool
>= :: C -> C -> Bool
$cmax :: C -> C -> C
max :: C -> C -> C
$cmin :: C -> C -> C
min :: C -> C -> C
Ord, Int -> C -> ShowS
[C] -> ShowS
C -> String
(Int -> C -> ShowS) -> (C -> String) -> ([C] -> ShowS) -> Show C
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
$cshowsPrec :: Int -> C -> ShowS
showsPrec :: Int -> C -> ShowS
$cshow :: C -> String
show :: C -> String
$cshowList :: [C] -> ShowS
showList :: [C] -> ShowS
Show)
type Registers = IntMap Int
stageTH
main :: IO ()
IO ()
main =
do (ip, pgm) <- [format|2018 19 #ip %u%n(@C %u %u %u%n)*|]
let regs = [(Int, Int)] -> IntMap Int
forall a. [(Int, a)] -> IntMap a
IntMap.fromList [(Int
0,Int
0),(Int
1,Int
0),(Int
2,Int
0),(Int
3,Int
0),(Int
4,Int
0),(Int
5,Int
0)]
print (run ip (Vector.fromList pgm) regs IntMap.! 0)
run :: Int -> Vector (C, Int, Int, Int) -> Registers -> Registers
run :: Int -> Vector (C, Int, Int, Int) -> IntMap Int -> IntMap Int
run Int
ip Vector (C, Int, Int, Int)
pgm IntMap Int
regs =
case Vector (C, Int, Int, Int)
pgm Vector (C, Int, Int, Int) -> Int -> Maybe (C, Int, Int, Int)
forall a. Vector a -> Int -> Maybe a
Vector.!? (IntMap Int
regs IntMap Int -> Int -> Int
forall a. IntMap a -> Int -> a
IntMap.! Int
ip) of
Maybe (C, Int, Int, Int)
Nothing -> IntMap Int
regs
Just (C
o, Int
a, Int
b, Int
c) -> Int -> Vector (C, Int, Int, Int) -> IntMap Int -> IntMap Int
run Int
ip Vector (C, Int, Int, Int)
pgm (IntMap Int -> IntMap Int
nextIP (C -> Int -> Int -> Int -> IntMap Int -> IntMap Int
opcodes C
o Int
a Int
b Int
c IntMap Int
regs))
where
nextIP :: IntMap Int -> IntMap Int
nextIP = (Int -> Maybe Int) -> Int -> IntMap Int -> IntMap Int
forall a. (a -> Maybe a) -> Int -> IntMap a -> IntMap a
IntMap.update (Int -> Maybe Int
forall a. a -> Maybe a
Just (Int -> Maybe Int) -> (Int -> Int) -> Int -> Maybe Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Int
1Int -> Int -> Int
forall a. Num a => a -> a -> a
+)) Int
ip
opcodes :: C -> Int -> Int -> Int -> Registers -> Registers
opcodes :: C -> Int -> Int -> Int -> IntMap Int -> IntMap Int
opcodes C
o = ((Int -> Int) -> Int -> Int -> Int)
-> Int -> Int -> Int -> IntMap Int -> IntMap Int
forall {a} {t} {t}.
((Int -> a) -> t -> t -> a)
-> t -> t -> Int -> IntMap a -> IntMap a
sem \Int -> Int
reg Int
a Int
b ->
case C
o of
C
Caddr -> Int -> Int
reg Int
a Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int -> Int
reg Int
b
C
Caddi -> Int -> Int
reg Int
a Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int -> Int
forall {p}. p -> p
val Int
b
C
Cmulr -> Int -> Int
reg Int
a Int -> Int -> Int
forall a. Num a => a -> a -> a
* Int -> Int
reg Int
b
C
Cmuli -> Int -> Int
reg Int
a Int -> Int -> Int
forall a. Num a => a -> a -> a
* Int -> Int
forall {p}. p -> p
val Int
b
C
Cbanr -> Int -> Int
reg Int
a Int -> Int -> Int
forall a. Bits a => a -> a -> a
.&. Int -> Int
reg Int
b
C
Cbani -> Int -> Int
reg Int
a Int -> Int -> Int
forall a. Bits a => a -> a -> a
.&. Int -> Int
forall {p}. p -> p
val Int
b
C
Cborr -> Int -> Int
reg Int
a Int -> Int -> Int
forall a. Bits a => a -> a -> a
.|. Int -> Int
reg Int
b
C
Cbori -> Int -> Int
reg Int
a Int -> Int -> Int
forall a. Bits a => a -> a -> a
.|. Int -> Int
forall {p}. p -> p
val Int
b
C
Csetr -> Int -> Int
reg Int
a
C
Cseti -> Int -> Int
forall {p}. p -> p
val Int
a
C
Cgtir -> if Int -> Int
forall {p}. p -> p
val Int
a Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int -> Int
reg Int
b then Int
1 else Int
0
C
Cgtri -> if Int -> Int
reg Int
a Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int -> Int
forall {p}. p -> p
val Int
b then Int
1 else Int
0
C
Cgtrr -> if Int -> Int
reg Int
a Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int -> Int
reg Int
b then Int
1 else Int
0
C
Ceqir -> if Int -> Int
forall {p}. p -> p
val Int
a Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int -> Int
reg Int
b then Int
1 else Int
0
C
Ceqri -> if Int -> Int
reg Int
a Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int -> Int
forall {p}. p -> p
val Int
b then Int
1 else Int
0
C
Ceqrr -> if Int -> Int
reg Int
a Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int -> Int
reg Int
b then Int
1 else Int
0
where
sem :: ((Int -> a) -> t -> t -> a)
-> t -> t -> Int -> IntMap a -> IntMap a
sem (Int -> a) -> t -> t -> a
f t
a t
b Int
c IntMap a
regs = Int -> a -> IntMap a -> IntMap a
forall a. Int -> a -> IntMap a -> IntMap a
IntMap.insert Int
c ((Int -> a) -> t -> t -> a
f (IntMap a
regs IntMap a -> Int -> a
forall a. IntMap a -> Int -> a
IntMap.!) t
a t
b) IntMap a
regs
val :: p -> p
val p
v = p
v