{-# Language ImportQualifiedPost, BlockArguments #-}
module Main (main) where
import Control.Monad (replicateM)
import Data.Map (Map)
import Data.Map.Strict qualified as Map
import Data.Set (Set)
import Data.Set qualified as Set
import Advent (getInputMap, times)
import Advent.Coord (Coord(..))
main :: IO ()
IO ()
main =
do inp <- Map Coord Char -> Set Coord
forall k a. Map k a -> Set k
Map.keysSet (Map Coord Char -> Set Coord)
-> (Map Coord Char -> Map Coord Char)
-> Map Coord Char
-> Set Coord
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Char -> Bool) -> Map Coord Char -> Map Coord Char
forall a k. (a -> Bool) -> Map k a -> Map k a
Map.filter (Char
'#'Char -> Char -> Bool
forall a. Eq a => a -> a -> Bool
==) (Map Coord Char -> Set Coord)
-> IO (Map Coord Char) -> IO (Set Coord)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Int -> Int -> IO (Map Coord Char)
getInputMap Int
2020 Int
17
print (run neighborCount3 (Set.map toC3 inp))
print (run neighborCount4 (Set.map toC4 inp))
run ::
Ord a =>
(a -> Map a Int) ->
Set a ->
Int
run :: forall a. Ord a => (a -> Map a Int) -> Set a -> Int
run a -> Map a Int
neighbor = Set a -> Int
forall a. Set a -> Int
Set.size (Set a -> Int) -> (Set a -> Set a) -> Set a -> Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> (Set a -> Set a) -> Set a -> Set a
forall a. Int -> (a -> a) -> a -> a
times Int
6 ((a -> Map a Int) -> Set a -> Set a
forall a. Ord a => (a -> Map a Int) -> Set a -> Set a
step a -> Map a Int
neighbor)
rule ::
Ord a =>
Set a ->
a ->
Int ->
Bool
rule :: forall a. Ord a => Set a -> a -> Int -> Bool
rule Set a
world a
c Int
n = Int
n Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
3 Bool -> Bool -> Bool
|| Int
n Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
2 Bool -> Bool -> Bool
&& a -> Set a -> Bool
forall a. Ord a => a -> Set a -> Bool
Set.member a
c Set a
world
step :: Ord a => (a -> Map a Int) -> Set a -> Set a
step :: forall a. Ord a => (a -> Map a Int) -> Set a -> Set a
step a -> Map a Int
neighbor Set a
world
= Map a Int -> Set a
forall k a. Map k a -> Set k
Map.keysSet
(Map a Int -> Set a) -> Map a Int -> Set a
forall a b. (a -> b) -> a -> b
$ (a -> Int -> Bool) -> Map a Int -> Map a Int
forall k a. (k -> a -> Bool) -> Map k a -> Map k a
Map.filterWithKey (Set a -> a -> Int -> Bool
forall a. Ord a => Set a -> a -> Int -> Bool
rule Set a
world)
(Map a Int -> Map a Int) -> Map a Int -> Map a Int
forall a b. (a -> b) -> a -> b
$ (Int -> Int -> Int) -> [Map a Int] -> Map a Int
forall (f :: * -> *) k a.
(Foldable f, Ord k) =>
(a -> a -> a) -> f (Map k a) -> Map k a
Map.unionsWith Int -> Int -> Int
forall a. Num a => a -> a -> a
(+)
([Map a Int] -> Map a Int) -> [Map a Int] -> Map a Int
forall a b. (a -> b) -> a -> b
$ (a -> Map a Int) -> [a] -> [Map a Int]
forall a b. (a -> b) -> [a] -> [b]
map a -> Map a Int
neighbor
([a] -> [Map a Int]) -> [a] -> [Map a Int]
forall a b. (a -> b) -> a -> b
$ Set a -> [a]
forall a. Set a -> [a]
Set.toList Set a
world
data C3 = C3 !Int !Int !Int deriving (C3 -> C3 -> Bool
(C3 -> C3 -> Bool) -> (C3 -> C3 -> Bool) -> Eq C3
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
$c== :: C3 -> C3 -> Bool
== :: C3 -> C3 -> Bool
$c/= :: C3 -> C3 -> Bool
/= :: C3 -> C3 -> Bool
Eq, Eq C3
Eq C3 =>
(C3 -> C3 -> Ordering)
-> (C3 -> C3 -> Bool)
-> (C3 -> C3 -> Bool)
-> (C3 -> C3 -> Bool)
-> (C3 -> C3 -> Bool)
-> (C3 -> C3 -> C3)
-> (C3 -> C3 -> C3)
-> Ord C3
C3 -> C3 -> Bool
C3 -> C3 -> Ordering
C3 -> C3 -> C3
forall a.
Eq a =>
(a -> a -> Ordering)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> a)
-> (a -> a -> a)
-> Ord a
$ccompare :: C3 -> C3 -> Ordering
compare :: C3 -> C3 -> Ordering
$c< :: C3 -> C3 -> Bool
< :: C3 -> C3 -> Bool
$c<= :: C3 -> C3 -> Bool
<= :: C3 -> C3 -> Bool
$c> :: C3 -> C3 -> Bool
> :: C3 -> C3 -> Bool
$c>= :: C3 -> C3 -> Bool
>= :: C3 -> C3 -> Bool
$cmax :: C3 -> C3 -> C3
max :: C3 -> C3 -> C3
$cmin :: C3 -> C3 -> C3
min :: C3 -> C3 -> C3
Ord)
toC3 :: Coord -> C3
toC3 :: Coord -> C3
toC3 (C Int
y Int
x) = Int -> Int -> Int -> C3
C3 Int
x Int
y Int
0
neighborCount3 :: C3 -> Map C3 Int
neighborCount3 :: C3 -> Map C3 Int
neighborCount3 =
let ns :: Map C3 Int
ns = [(C3, Int)] -> Map C3 Int
forall k a. Ord k => [(k, a)] -> Map k a
Map.fromList [(Int -> Int -> Int -> C3
C3 Int
x Int
y Int
z,Int
1) | [Int
x,Int
y,Int
z] <- [[Int]] -> [[Int]]
forall a. HasCallStack => [a] -> [a]
tail (Int -> [Int] -> [[Int]]
forall (m :: * -> *) a. Applicative m => Int -> m a -> m [a]
replicateM Int
3 [Int
0,-Int
1,Int
1])]
in \(C3 Int
a Int
b Int
c) -> (C3 -> C3) -> Map C3 Int -> Map C3 Int
forall k1 k2 a. (k1 -> k2) -> Map k1 a -> Map k2 a
Map.mapKeysMonotonic (\(C3 Int
x Int
y Int
z) -> Int -> Int -> Int -> C3
C3 (Int
aInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
x) (Int
bInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
y) (Int
cInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
z)) Map C3 Int
ns
data C4 = C4 !Int !Int !Int !Int deriving (C4 -> C4 -> Bool
(C4 -> C4 -> Bool) -> (C4 -> C4 -> Bool) -> Eq C4
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
$c== :: C4 -> C4 -> Bool
== :: C4 -> C4 -> Bool
$c/= :: C4 -> C4 -> Bool
/= :: C4 -> C4 -> Bool
Eq, Eq C4
Eq C4 =>
(C4 -> C4 -> Ordering)
-> (C4 -> C4 -> Bool)
-> (C4 -> C4 -> Bool)
-> (C4 -> C4 -> Bool)
-> (C4 -> C4 -> Bool)
-> (C4 -> C4 -> C4)
-> (C4 -> C4 -> C4)
-> Ord C4
C4 -> C4 -> Bool
C4 -> C4 -> Ordering
C4 -> C4 -> C4
forall a.
Eq a =>
(a -> a -> Ordering)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> a)
-> (a -> a -> a)
-> Ord a
$ccompare :: C4 -> C4 -> Ordering
compare :: C4 -> C4 -> Ordering
$c< :: C4 -> C4 -> Bool
< :: C4 -> C4 -> Bool
$c<= :: C4 -> C4 -> Bool
<= :: C4 -> C4 -> Bool
$c> :: C4 -> C4 -> Bool
> :: C4 -> C4 -> Bool
$c>= :: C4 -> C4 -> Bool
>= :: C4 -> C4 -> Bool
$cmax :: C4 -> C4 -> C4
max :: C4 -> C4 -> C4
$cmin :: C4 -> C4 -> C4
min :: C4 -> C4 -> C4
Ord)
toC4 :: Coord -> C4
toC4 :: Coord -> C4
toC4 (C Int
y Int
x) = Int -> Int -> Int -> Int -> C4
C4 Int
x Int
y Int
0 Int
0
neighborCount4 :: C4 -> Map C4 Int
neighborCount4 :: C4 -> Map C4 Int
neighborCount4 =
let ns :: Map C4 Int
ns = [(C4, Int)] -> Map C4 Int
forall k a. Ord k => [(k, a)] -> Map k a
Map.fromList [(Int -> Int -> Int -> Int -> C4
C4 Int
x Int
y Int
z Int
w,Int
1) | [Int
x,Int
y,Int
z,Int
w] <- [[Int]] -> [[Int]]
forall a. HasCallStack => [a] -> [a]
tail (Int -> [Int] -> [[Int]]
forall (m :: * -> *) a. Applicative m => Int -> m a -> m [a]
replicateM Int
4 [Int
0,-Int
1,Int
1])]
in \(C4 Int
a Int
b Int
c Int
d) -> (C4 -> C4) -> Map C4 Int -> Map C4 Int
forall k1 k2 a. (k1 -> k2) -> Map k1 a -> Map k2 a
Map.mapKeysMonotonic (\(C4 Int
x Int
y Int
z Int
w) -> Int -> Int -> Int -> Int -> C4
C4 (Int
aInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
x) (Int
bInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
y) (Int
cInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
z) (Int
dInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
w)) Map C4 Int
ns