{-# Language ImportQualifiedPost, QuasiQuotes, MonadComprehensions, GeneralisedNewtypeDeriving #-}
module Main (main) where
import Advent (counts, format)
import Control.Applicative (Alternative)
import Control.Monad (replicateM)
import Control.Monad.Trans.Writer.Strict (WriterT(..))
import Data.Coerce (coerce)
import Data.List (scanl', unfoldr)
import Data.Map (Map)
import Data.Map.Strict qualified as Map
import Data.Monoid (Product(..))
main :: IO ()
IO ()
main =
do (p1,p2) <- [format|2021 21 Player 1 starting position: %u%nPlayer 2 starting position: %u%n|]
print (part1 p1 p2)
print (part2 p1 p2)
part1 ::
Int ->
Int ->
Int
part1 :: Int -> Int -> Int
part1 = Int -> Int -> Int -> Int -> Int -> Int
go Int
0 Int
0 Int
0
where
go :: Int -> Int -> Int -> Int -> Int -> Int
go Int
turns Int
s1 Int
s2 Int
p1 Int
p2
| Int
s1' Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
1000 = Int
3 Int -> Int -> Int
forall a. Num a => a -> a -> a
* Int
turns' Int -> Int -> Int
forall a. Num a => a -> a -> a
* Int
s2
| Bool
otherwise = Int -> Int -> Int -> Int -> Int -> Int
go Int
turns' Int
s2 Int
s1' Int
p2 Int
p1'
where
turns' :: Int
turns' = Int
turns Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1
p1' :: Int
p1' = Int -> Int -> Int
wrap (Int
p1 Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
6 Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
turns) Int
10
s1' :: Int
s1' = Int
s1 Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
p1'
part2 ::
Int ->
Int ->
Int
part2 :: Int -> Int -> Int
part2 Int
p1 Int
p2 = Int -> Int -> Int
forall a. Ord a => a -> a -> a
max Int
u1 Int
u2
where
w1 :: [Int]
w1 = Int -> [Int]
wins Int
p1
w2 :: [Int]
w2 = Int -> [Int]
wins Int
p2
l1 :: [Int]
l1 = [Int] -> [Int]
toLoses [Int]
w1
l2 :: [Int]
l2 = [Int] -> [Int]
toLoses [Int]
w2
u1 :: Int
u1 = [Int] -> Int
forall a. Num a => [a] -> a
forall (t :: * -> *) a. (Foldable t, Num a) => t a -> a
sum ((Int -> Int -> Int) -> [Int] -> [Int] -> [Int]
forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith Int -> Int -> Int
forall a. Num a => a -> a -> a
(*) [Int]
w1 [Int]
l2)
u2 :: Int
u2 = [Int] -> Int
forall a. Num a => [a] -> a
forall (t :: * -> *) a. (Foldable t, Num a) => t a -> a
sum ((Int -> Int -> Int) -> [Int] -> [Int] -> [Int]
forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith Int -> Int -> Int
forall a. Num a => a -> a -> a
(*) [Int]
w2 ([Int] -> [Int]
forall a. HasCallStack => [a] -> [a]
tail [Int]
l1))
wins :: Int -> [Int]
wins :: Int -> [Int]
wins Int
x = (Map (Int, Int) Int -> Maybe (Int, Map (Int, Int) Int))
-> Map (Int, Int) Int -> [Int]
forall b a. (b -> Maybe (a, b)) -> b -> [a]
unfoldr Map (Int, Int) Int -> Maybe (Int, Map (Int, Int) Int)
p2step ((Int, Int) -> Int -> Map (Int, Int) Int
forall k a. k -> a -> Map k a
Map.singleton (Int
x, Int
0) Int
1)
toLoses :: [Int] -> [Int]
toLoses :: [Int] -> [Int]
toLoses = (Int -> Int -> Int) -> Int -> [Int] -> [Int]
forall b a. (b -> a -> b) -> b -> [a] -> [b]
scanl' (\Int
acc Int
w -> Int
acc Int -> Int -> Int
forall a. Num a => a -> a -> a
* Map Int Int -> Int
forall a. Num a => Map Int a -> a
forall (t :: * -> *) a. (Foldable t, Num a) => t a -> a
sum Map Int Int
rolls Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
w) Int
1
p2step ::
Map (Int, Int) Int ->
Maybe (Int, Map (Int, Int) Int)
p2step :: Map (Int, Int) Int -> Maybe (Int, Map (Int, Int) Int)
p2step Map (Int, Int) Int
games
| Map (Int, Int) Int -> Bool
forall k a. Map k a -> Bool
Map.null Map (Int, Int) Int
games = Maybe (Int, Map (Int, Int) Int)
forall a. Maybe a
Nothing
| Bool
otherwise = (Int, Map (Int, Int) Int) -> Maybe (Int, Map (Int, Int) Int)
forall a. a -> Maybe a
Just (Map (Int, Int) Int -> Int
forall a. Num a => Map (Int, Int) a -> a
forall (t :: * -> *) a. (Foldable t, Num a) => t a -> a
sum Map (Int, Int) Int
winStates, Map (Int, Int) Int
games')
where
(Map (Int, Int) Int
winStates, Map (Int, Int) Int
games') =
((Int, Int) -> Int -> Bool)
-> Map (Int, Int) Int -> (Map (Int, Int) Int, Map (Int, Int) Int)
forall k a. (k -> a -> Bool) -> Map k a -> (Map k a, Map k a)
Map.partitionWithKey (\(Int
_,Int
score) Int
_ -> Int
score Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
21) (Map (Int, Int) Int -> (Map (Int, Int) Int, Map (Int, Int) Int))
-> Map (Int, Int) Int -> (Map (Int, Int) Int, Map (Int, Int) Int)
forall a b. (a -> b) -> a -> b
$
Counter (Int, Int) -> Map (Int, Int) Int
forall a. Ord a => Counter a -> Map a Int
fromCounter
[ (Int
loc', Int
score Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
loc')
| (Int
loc, Int
score) <- Map (Int, Int) Int -> Counter (Int, Int)
forall a. Map a Int -> Counter a
toCounter Map (Int, Int) Int
games
, Int
roll <- Map Int Int -> Counter Int
forall a. Map a Int -> Counter a
toCounter Map Int Int
rolls
, let loc' :: Int
loc' = Int -> Int -> Int
wrap (Int
locInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
roll) Int
10
]
rolls :: Map Int Int
rolls :: Map Int Int
rolls = [Int] -> Map Int Int
forall (f :: * -> *) a. (Foldable f, Ord a) => f a -> Map a Int
counts ([Int] -> Int
forall a. Num a => [a] -> a
forall (t :: * -> *) a. (Foldable t, Num a) => t a -> a
sum ([Int] -> Int) -> [[Int]] -> [Int]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Int -> [Int] -> [[Int]]
forall (m :: * -> *) a. Applicative m => Int -> m a -> m [a]
replicateM Int
3 [Int
1..Int
3])
wrap :: Int -> Int -> Int
wrap :: Int -> Int -> Int
wrap Int
x Int
n = (Int
x Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1) Int -> Int -> Int
forall a. Integral a => a -> a -> a
`mod` Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1
newtype Counter a = Counter (WriterT (Product Int) [] a)
deriving ((forall a b. (a -> b) -> Counter a -> Counter b)
-> (forall a b. a -> Counter b -> Counter a) -> Functor Counter
forall a b. a -> Counter b -> Counter a
forall a b. (a -> b) -> Counter a -> Counter b
forall (f :: * -> *).
(forall a b. (a -> b) -> f a -> f b)
-> (forall a b. a -> f b -> f a) -> Functor f
$cfmap :: forall a b. (a -> b) -> Counter a -> Counter b
fmap :: forall a b. (a -> b) -> Counter a -> Counter b
$c<$ :: forall a b. a -> Counter b -> Counter a
<$ :: forall a b. a -> Counter b -> Counter a
Functor, Functor Counter
Functor Counter =>
(forall a. a -> Counter a)
-> (forall a b. Counter (a -> b) -> Counter a -> Counter b)
-> (forall a b c.
(a -> b -> c) -> Counter a -> Counter b -> Counter c)
-> (forall a b. Counter a -> Counter b -> Counter b)
-> (forall a b. Counter a -> Counter b -> Counter a)
-> Applicative Counter
forall a. a -> Counter a
forall a b. Counter a -> Counter b -> Counter a
forall a b. Counter a -> Counter b -> Counter b
forall a b. Counter (a -> b) -> Counter a -> Counter b
forall a b c. (a -> b -> c) -> Counter a -> Counter b -> Counter c
forall (f :: * -> *).
Functor f =>
(forall a. a -> f a)
-> (forall a b. f (a -> b) -> f a -> f b)
-> (forall a b c. (a -> b -> c) -> f a -> f b -> f c)
-> (forall a b. f a -> f b -> f b)
-> (forall a b. f a -> f b -> f a)
-> Applicative f
$cpure :: forall a. a -> Counter a
pure :: forall a. a -> Counter a
$c<*> :: forall a b. Counter (a -> b) -> Counter a -> Counter b
<*> :: forall a b. Counter (a -> b) -> Counter a -> Counter b
$cliftA2 :: forall a b c. (a -> b -> c) -> Counter a -> Counter b -> Counter c
liftA2 :: forall a b c. (a -> b -> c) -> Counter a -> Counter b -> Counter c
$c*> :: forall a b. Counter a -> Counter b -> Counter b
*> :: forall a b. Counter a -> Counter b -> Counter b
$c<* :: forall a b. Counter a -> Counter b -> Counter a
<* :: forall a b. Counter a -> Counter b -> Counter a
Applicative, Applicative Counter
Applicative Counter =>
(forall a b. Counter a -> (a -> Counter b) -> Counter b)
-> (forall a b. Counter a -> Counter b -> Counter b)
-> (forall a. a -> Counter a)
-> Monad Counter
forall a. a -> Counter a
forall a b. Counter a -> Counter b -> Counter b
forall a b. Counter a -> (a -> Counter b) -> Counter b
forall (m :: * -> *).
Applicative m =>
(forall a b. m a -> (a -> m b) -> m b)
-> (forall a b. m a -> m b -> m b)
-> (forall a. a -> m a)
-> Monad m
$c>>= :: forall a b. Counter a -> (a -> Counter b) -> Counter b
>>= :: forall a b. Counter a -> (a -> Counter b) -> Counter b
$c>> :: forall a b. Counter a -> Counter b -> Counter b
>> :: forall a b. Counter a -> Counter b -> Counter b
$creturn :: forall a. a -> Counter a
return :: forall a. a -> Counter a
Monad, Applicative Counter
Applicative Counter =>
(forall a. Counter a)
-> (forall a. Counter a -> Counter a -> Counter a)
-> (forall a. Counter a -> Counter [a])
-> (forall a. Counter a -> Counter [a])
-> Alternative Counter
forall a. Counter a
forall a. Counter a -> Counter [a]
forall a. Counter a -> Counter a -> Counter a
forall (f :: * -> *).
Applicative f =>
(forall a. f a)
-> (forall a. f a -> f a -> f a)
-> (forall a. f a -> f [a])
-> (forall a. f a -> f [a])
-> Alternative f
$cempty :: forall a. Counter a
empty :: forall a. Counter a
$c<|> :: forall a. Counter a -> Counter a -> Counter a
<|> :: forall a. Counter a -> Counter a -> Counter a
$csome :: forall a. Counter a -> Counter [a]
some :: forall a. Counter a -> Counter [a]
$cmany :: forall a. Counter a -> Counter [a]
many :: forall a. Counter a -> Counter [a]
Alternative)
toCounter :: Map a Int -> Counter a
toCounter :: forall a. Map a Int -> Counter a
toCounter = [(a, Int)] -> Counter a
forall a b. Coercible a b => a -> b
coerce ([(a, Int)] -> Counter a)
-> (Map a Int -> [(a, Int)]) -> Map a Int -> Counter a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Map a Int -> [(a, Int)]
forall k a. Map k a -> [(k, a)]
Map.assocs
fromCounter :: Ord a => Counter a -> Map a Int
fromCounter :: forall a. Ord a => Counter a -> Map a Int
fromCounter = (Int -> Int -> Int) -> [(a, Int)] -> Map a Int
forall k a. Ord k => (a -> a -> a) -> [(k, a)] -> Map k a
Map.fromListWith Int -> Int -> Int
forall a. Num a => a -> a -> a
(+) ([(a, Int)] -> Map a Int)
-> (Counter a -> [(a, Int)]) -> Counter a -> Map a Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Counter a -> [(a, Int)]
forall a b. Coercible a b => a -> b
coerce