{-# Language QuasiQuotes, DataKinds, NumericUnderscores, GADTs #-}
module Main where
import Advent (format)
import Advent.Box (Box', Box(Dim,Pt), subtractBox, size, unionBoxes)
import Advent.Coord (manhattan, Coord(C))
import Advent.Nat (Nat(S))
type Input = [(Int,Int,Int,Int)]
main :: IO ()
IO ()
main =
do (cfg,input) <- [format|2022 15
(|part 1 override %u part 2 override %u%n)
(Sensor at x=%d, y=%d: closest beacon is at x=%d, y=%d%n)*|]
let (diamonds, beacons) = unzip (inputSensors input)
print (part1 (maybe 2_000_000 fst cfg) diamonds beacons)
print (part2 (maybe 4_000_000 snd cfg) diamonds)
data Sensor = Sensor Coord Int
inputSensors :: Input -> [(Sensor, Coord)]
inputSensors :: [(Int, Int, Int, Int)] -> [(Sensor, Coord)]
inputSensors [(Int, Int, Int, Int)]
input =
[(Coord -> Int -> Sensor
Sensor Coord
s (Coord -> Coord -> Int
manhattan Coord
s Coord
b), Coord
b) | (Int
sx,Int
sy,Int
bx,Int
by) <- [(Int, Int, Int, Int)]
input, let s :: Coord
s = Int -> Int -> Coord
C Int
sy Int
sx, let b :: Coord
b = Int -> Int -> Coord
C Int
by Int
bx]
part1 ::
Int ->
[Sensor] ->
[Coord] ->
Int
part1 :: Int -> [Sensor] -> [Coord] -> Int
part1 Int
row [Sensor]
diamonds [Coord]
beacons =
[Int] -> Int
forall a. Num a => [a] -> a
forall (t :: * -> *) a. (Foldable t, Num a) => t a -> a
sum ([Int] -> Int) -> [Int] -> Int
forall a b. (a -> b) -> a -> b
$ (Box ('S 'Z) -> Int) -> [Box ('S 'Z)] -> [Int]
forall a b. (a -> b) -> [a] -> [b]
map Box ('S 'Z) -> Int
forall (n :: Nat). Box n -> Int
size ([Box ('S 'Z)] -> [Int]) -> [Box ('S 'Z)] -> [Int]
forall a b. (a -> b) -> a -> b
$
[Box ('S 'Z)] -> [Box ('S 'Z)] -> [Box ('S 'Z)]
forall (n :: Nat). [Box n] -> [Box n] -> [Box n]
subtractAllOf [Int -> Int -> Box 'Z -> Box ('S 'Z)
forall (n :: Nat). Int -> Int -> Box n -> Box ('S n)
cover Int
x Int
0 Box 'Z
Pt | C Int
y Int
x <- [Coord]
beacons, Int
y Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
row] ([Box ('S 'Z)] -> [Box ('S 'Z)]) -> [Box ('S 'Z)] -> [Box ('S 'Z)]
forall a b. (a -> b) -> a -> b
$
[Box ('S 'Z)] -> [Box ('S 'Z)]
forall (a :: Nat). [Box a] -> [Box a]
unionBoxes ([Box ('S 'Z)] -> [Box ('S 'Z)]) -> [Box ('S 'Z)] -> [Box ('S 'Z)]
forall a b. (a -> b) -> a -> b
$
(Sensor -> [Box ('S 'Z)]) -> [Sensor] -> [Box ('S 'Z)]
forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap (Int -> Sensor -> [Box' 1]
rowSlice Int
row) [Sensor]
diamonds
rowSlice ::
Int ->
Sensor ->
[Box' 1]
rowSlice :: Int -> Sensor -> [Box' 1]
rowSlice Int
y (Sensor (C Int
sy Int
sx) Int
r) = [Int -> Int -> Box 'Z -> Box ('S 'Z)
forall (n :: Nat). Int -> Int -> Box n -> Box ('S n)
cover Int
sx Int
dx Box 'Z
Pt | Int
dx Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
0]
where
dy :: Int
dy = Int -> Int
forall a. Num a => a -> a
abs (Int
y Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
sy)
dx :: Int
dx = Int
r Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
dy
part2 ::
Int ->
[Sensor] ->
Int
part2 :: Int -> [Sensor] -> Int
part2 Int
search [Sensor]
diamonds = [Int] -> Int
forall a. HasCallStack => [a] -> a
head
[ Int
4_000_000 Int -> Int -> Int
forall a. Num a => a -> a -> a
* Int
x Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
y
| let center :: Coord
center = Int -> Int -> Coord
C (Int
searchInt -> Int -> Int
forall a. Integral a => a -> a -> a
`div`Int
2) (Int
searchInt -> Int -> Int
forall a. Integral a => a -> a -> a
`div`Int
2)
, C Int
y Int
x <-
(Box ('S ('S 'Z)) -> Coord) -> [Box ('S ('S 'Z))] -> [Coord]
forall a b. (a -> b) -> [a] -> [b]
map Box' 2 -> Coord
Box ('S ('S 'Z)) -> Coord
boxCorner ([Box ('S ('S 'Z))] -> [Coord]) -> [Box ('S ('S 'Z))] -> [Coord]
forall a b. (a -> b) -> a -> b
$
[Box ('S ('S 'Z))] -> [Box ('S ('S 'Z))] -> [Box ('S ('S 'Z))]
forall (n :: Nat). [Box n] -> [Box n] -> [Box n]
subtractAllOf ((Sensor -> Box ('S ('S 'Z))) -> [Sensor] -> [Box ('S ('S 'Z))]
forall a b. (a -> b) -> [a] -> [b]
map Sensor -> Box' 2
Sensor -> Box ('S ('S 'Z))
diamondBox [Sensor]
diamonds)
[Sensor -> Box' 2
diamondBox (Coord -> Int -> Sensor
Sensor Coord
center Int
search)]
, Int
0 Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Int
y, Int
y Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Int
search
, Int
0 Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Int
x, Int
x Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Int
search]
boxCorner :: Box' 2 -> Coord
boxCorner :: Box' 2 -> Coord
boxCorner (Dim Int
xpy Int
_ (Dim Int
xmy Int
_ Box n
_)) = Int -> Int -> Coord
C ((Int
xpy Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
xmy) Int -> Int -> Int
forall a. Integral a => a -> a -> a
`div` Int
2) ((Int
xpy Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
xmy) Int -> Int -> Int
forall a. Integral a => a -> a -> a
`div` Int
2)
diamondBox :: Sensor -> Box' 2
diamondBox :: Sensor -> Box' 2
diamondBox (Sensor (C Int
y Int
x) Int
r) = Int -> Int -> Box ('S 'Z) -> Box ('S ('S 'Z))
forall (n :: Nat). Int -> Int -> Box n -> Box ('S n)
cover (Int
xInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
y) Int
r (Int -> Int -> Box 'Z -> Box ('S 'Z)
forall (n :: Nat). Int -> Int -> Box n -> Box ('S n)
cover (Int
xInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
y) Int
r Box 'Z
Pt)
subtractAllOf ::
[Box n] ->
[Box n] ->
[Box n]
subtractAllOf :: forall (n :: Nat). [Box n] -> [Box n] -> [Box n]
subtractAllOf [Box n]
xs [Box n]
ys = ([Box n] -> Box n -> [Box n]) -> [Box n] -> [Box n] -> [Box n]
forall b a. (b -> a -> b) -> b -> [a] -> b
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl [Box n] -> Box n -> [Box n]
forall {t :: * -> *} {n :: Nat}.
Foldable t =>
t (Box n) -> Box n -> [Box n]
remove1 [Box n]
ys [Box n]
xs
where
remove1 :: t (Box n) -> Box n -> [Box n]
remove1 t (Box n)
acc Box n
x = (Box n -> [Box n]) -> t (Box n) -> [Box n]
forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap (Box n -> Box n -> [Box n]
forall (n :: Nat). Box n -> Box n -> [Box n]
subtractBox Box n
x) t (Box n)
acc
cover :: Int -> Int -> Box n -> Box ('S n)
cover :: forall (n :: Nat). Int -> Int -> Box n -> Box ('S n)
cover Int
x Int
r = Int -> Int -> Box n -> Box ('S n)
forall (n :: Nat). Int -> Int -> Box n -> Box ('S n)
Dim (Int
x Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
r) (Int
x Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
r Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1)